
LOGO/COMPUTER SC! C

COMPARE looks at each fact in the database in turn.
If there is a match then the new set of values in
VARS are added to ANS before setting VARS back to
the empty list. COMPARE then continues working
through the DATABASE to see if there are any other
possible matches.

TO COM PARE : QU ERY : DATA
IF EMPTY? :DATA THEN STOP
IF MATCH? :QUERY FIRST DATA THEN MAKE

"ANS FPUT :VARS :ANS
MAKE "VARS []
COMPARE QUERY BUTFIRST :DATA

END

TO PRINTL :LIST
IF EMPTY? LIST STOP
PRINT FIRST LIST
PRINTL BUTFIRST LIST

END

MORE COMPLEX ENQUIRIES
Our investigation will not go far, however, unless
we can ask more complex questions, such as 'What
implement killed Zachariah, and who owns such
an implement?' In wco, this reads:

WHICH [[KILLED ZACHARIAH ?IMPLEMENT]
[OWNS ?SUSPECT ?IMPLEMENT]]

To see what MATCH? does, consider the case where
the inputs are [OWNS ?SOMEONE AXE] and [OWNS
JOSHUA AXE] in response to which MATCH? outputs
TRUE and sets VARS to [?SOMEONE JOSHUA]. If the
inputs are [OWNS ?SOMEONE AXE] and [KILLED
ZACHARIAH AXE], then MATCH? outputs FALSE.

The real difficulties arise, however, if there is
more than one variable involved. VALUE? is used to
check if the variable has already been assigned a
value for that fact in the database.

We have used here an alternative notation for
conditionals in ioo. TEST evaluates a condition. If
the result is true then the actions following IFTRUE
will be performed, otherwise the actions following
IFFALSE will be carried out.

TO MATCH? QUERY FACT
IFALLOF EMPTY? :QUERY EMPTY? FACT THEN

OUTPUT "TRUE
TEST FIRST FIRST QUERY ="?
IFTRUE IF NOT VALUE? FIRST QUERY FIRST

FACT :VARS THEN OUTPUT "FALSE
IFFALSE IF NOT (FIRST QUERY = FIRST FACT)

THEN OUTPUT 'FALSE
OUTPUT MATCH? BUTFIRST QUERY BUTFIRSI

:FACT
END

To see how VALUE? works, let's first consider the
case where the inputs are ?IMPLEMENT, AXE, and
[?MAN ZACHARIAH]. VALUE? tries to ascertain
whether the variable ?IMPLEMENT could have the
value AXE. There are three possibilities:
?IMPLEMENT already has a value, which is not AXE,
and VALUE? outputs FALSE; ?IMPLEMENT already
has the value AXE, and VALUE outputs TRUE; or
?IMPLEMENT does not have a value, so it is given
the value AXE, and this information is added to
VARS and TRUE is output.

TO VALUE? NAME VALUE :VLIST
IF EMPTY? :VLIST THEN MAKE "VARS LPUT LIST

:NAME VALUE :VARS OUTPUT "TRUE
TEST :NAME = FIRST FIRST :VLIST
IFTRUE IF VALUE = LAST FIRST :VLIST THEN

OUTPUT "TRUE ELSE OUTPUT "FALSE
OUTPUT VALUE? NAME :VALUE BUTFIRST

:VLIST
END

PR INTL simply arranges for the components ofANS
to be printed out below each other.

WHICH now takes a list of queries as input and the
values found will he those that make all of the
queries true. If you then wish to ask a single query
with this new form of WHICH the syntax we use is:

WHICH [[OWNS ?ANY KNIFE]]

We need make only minor alterations to these
procedures:

TO WHICH QUERIES
FIND :QUERIES :DATABASE
PRINT [NO (MORE) ANSWERS]

END

TO FIND QUERIES :DATA
MAKE "VARS []
MAKE "ANS []
COMPARE QUERIES :DATA
PRINTL :ANS

END
COMPARE now has a rather difficult job to do. Let's
take [[KILLED ZACHARIAH ?IM PLEM ENT) [OWNS
?SUSPECT ?IMPLEMENT]] as an example input.
COMPARE goes through the database, one fact at a
time, to find a match for the first query, and ends
up matching ?IMPLEMENT with AXE. The routine
then considers the second query ([OWNS
?SUSPECT ?IMPLEMENT]), starting again from the
beginning of the database. A match is found for
the second condition, with the value of
?IMPLEMENT as AXE and ?SUSPECT as MAT-THEW.
There are no more queries, so this is a possible
solution.

But we have not finished yet; there may be other
values that satisfy the second query, while keeping
?IMPLEMENT as AXE. So COMPARE now proceeds
through the database from the point it left off, and
indeed finds a second solution with ?SUSPECT as
JOSHUA. Of course, the procedure does not stop
there, but continues searching the DATABASE. This
time it reaches the end without finding any new
matching values.

It is possible, however, that there is another
solution to the first query - other than
?IMPLEMENT as AXE - so we must go back to the
point where we found that match in the database
and carry on from there. This process is called
backtracking. In this case, there are in fact no other
solutions. -AV

rHE HOME COMPUTER ADVANCED COURSE 833

