
zBasic Programming

test fails.
If at some stage the space bar is pressed, AS will

be assigned the character representing a space,
and so the program will branch to line 80 and the
loop will not be repeated.

But what will happen while the loop is
repeating? Line 30 increments the value of R at
each repetition of the loop. The first time through,
R would be set to 1, the second time through it
would be set to 1 + 1 and so on. When the loop has

been broken out of by the test on AS, we could read
R to see what we had counted up to.

Computers, however, operate ve ry quickly and
so R could be in the hundreds by the time we press
the space bar. What would we do if we wanted
values of R only between 1 and 10? Line 80 sets up
another loop to enable us to test R and divide it by
10 if it is larger than 10. As long as R is larger than
10, the test in line 90 will fail, the value of 0 will be
reset to 0 and the loop will be repeated. Line 110
divides the value of R by 10 and a result is not
printed out until the value of R has been reduced to
a figure of less than 10. Line 30 ensures that the
value of R can never be 0.

In theory, then, this program should produce a
random number varying between 1 and 9
inclusive. But does it? The INT statement ensures
that the decimal fractions have been removed,
therefore the possible values of R would be
1,2,3,4,5,6,7,8,9. The average of these numbers is 5
(because their sum is 45, and 45 - 9 = 5). Try it
and see. You could do this by running the program
a number of times, noting the value of R each time
and then calculating the average. Alternatively,
you could add some lines to the program to make it
run, say, 100 times, adding the value of R to
another variable S and then dividing S by 100.

When we tried this, we found that the average
value of R was well below 5 and so the numbers
could not have been random. It is instructive to
consider why this could be.

The problem is that although BASIC is fast, it is
not fast enough. The first loop lets the value of R
increment until it reaches hundreds, or even
thousands, before we press the space bar. Unless
you make a deliberate effort to vary the amount of
time elapsing between seeing the HIT THE SPACE-
BAR prompt and actually pressing it, chances are
you will press it after a fairly regular lapse of time.
In this time, the value of R will probably have
increased to several hundred.

The divisions that take place to reduce the value
of R to a figure below 10 do not take place until
after the space bar has been pressed. This means
that R will almost always be in the low hundreds
before the divisions take place and so the final
value of R will tend to be low.

Is it possible to write a routine that overcomes
this problem? The answer is yes, if we can make
the counting process fast enough for our reaction
time to the HIT THE SPACE-BAR prompt to be truly
unpredictable. The solution is to make the test for
the `greater than upper limit' part of the first loop.
Consider this program:

1 74 THE HOME COMPUTER COURSE

10 REM CAME OF DICE -- MAIN PRCGRAM
20 RANDOMIZE
30 REM YOUR THROW
40 REM GOSUB 'THROW' ROUTINE
50 GOSUB 300
60 LET M = D

70 PRINT "YOUR SCORE IS A"
80 REM GOSUB 'SELECT' ROUTINE
90 GOSUB 390
100 PRINT
110 REM COMPUTER'S THROW
120 REM GOSUB 'THROW' ROUTINE
130 GOSUB 300
140 LET C = D
150 PRINT "THE COMPUTER'S SCORE IS A"
160 REM GOSUB 'SELECT' ROUTINE
170 COSUB 390
180 PRINT
190 REM WHO WON?
200 IF H = C THEN LET SS = "DRAW"
210 IF N > C THEN LET SS = "YOU WON"
220 IF M < C THEN LET S$ = "COMPUTER WON"
230 REM PRINT RESULT
240 PRINT S$
250 END
260 REM
270 REM
280 REM
290 REM
300 REM RANDOM DICE THROW SUBROUTINE
310 REM
320 LET D = INT(10*RND)
330 IF D > o THIN COTO 320
340 IF ) < 1 THEN COTO 320
350 RETURN
360 REM
370 REM
380 REM
390 REM SELECT SUBROUTINE
400 REM
410 IF D = 1 THEN GOSUB 530
420 IF D = 2 THEN GOSUB 600
430 IF D = 3 THEN GOSUB 670
440 IF D = 4 THEN GOSUB 740
450 IF D = 5 THEN GOSUB 810
460 IF D = 5 THEN GOSUB 880
470 RETURN
480 REM
490 REM
500 REM
510 'CRAPHI^S' SUBROUTINES
520 REM
530 PRINT 
540 PRINT
550 PRINT
560 PRINT "
570 PRINT
580 PRINT
590 RETURN

600 PRINT 
610 PRINT
620 PRINT
630 PRINT
640 PRINT "
650 PRINT "
660 RETURN
670 PRINT 
680 PRINT
690 PRINT " * "
700 PRINT "
710 PRINT " * "
720 PRINT "
730 RETURN
740 PRINT
750 PRINT
760 PRINT "
770 PRINT
780 PRINT " * *
790 PRINT "
800 RETJRN
810 PRINT 
820 PRINT
830 PRINT " * *
840 PRINT " «
850 PRINT "
860 PRINT "
870 RETURN
880 PRINT
890 PRINT
900 PRINT " * * "
910 PRINT "
920 PRINT "
930 PRINT "
940 RETURN


