" " test fails.

If at some stage the space bar is pressed, AS will be assigned the character representing a space, and so the program will branch to line 80 and the loop will not be repeated.

But what will happen while the loop is repeating? Line 30 increments the value of R at each repetition of the loop. The first time through, R would be set to 1 , the second time through it would be set to $1+1$ and so on. When the loop has been broken out of by the test on AS, we could read R to see what we had counted up to.

Computers, however, operate very quickly and so R could be in the hundreds by the time we press the space bar. What would we do if we wanted values of R only between 1 and 10 ? Line 80 sets up another loop to enable us to test R and divide it by 10 if it is larger than 10 . As long as R is larger than 10 , the test in line 90 will fail, the value of Q will be reset to 0 and the loop will be repeated. Line 110 divides the value of R by 10 and a result is not printed out until the value of R has been reduced to a figure of less than 10 . Line 30 ensures that the value of R can never be 0 .

In theory, then, this program should produce a random number varying between 1 and 9 inclusive. But does it? The INT statement ensures that the decimal fractions have been removed, therefore the possible values of R would be $1,2,3,4,5,6,7,8,9$. The average of these numbers is 5 (because their sum is 45 , and $45 \div 9=5$). Try it and see. You could do this by running the program a number of times, noting the value of R each time and then calculating the average. Alterratively, you could add some lines to the program to make it run, say, 100 times, adding the value of R to another variable S and then dividing S by 100 .

When we tried this, we found that the average value of R was well below 5 and so the numbers could not have been random. It is instructive to consider why this could be.

The problem is that although basic is fast, it is not fast enough. The first loop lets the value of R increment until it reaches hundreds, or even thousands, before we press the space bar. Unless you make a deliberate effort to vary the amount of time elapsing between seeing the HIT THE SPACEBAR prompt and actually pressing it, chances are you will press it after a fairly regular lapse of time. In this time, the value of R will probably have increased to several hundred.

The divisions that take place to reduce the value of R to a figure below 10 do not take place until after the space bar has been pressed. This means that R will almost always be in the low hundreds before the divisions take place and so the final value of R will tend to be low.

Is it possible to write a routine that overcomes this problem? The answer is yes, if we can make the counting process fast enough for our reaction time to the HIT THE SPACE-BAR prompt to be truly unpredictable. The solution is to make the test for the 'greater than upper limit' part of the first loop. Consider this program:

