
names of the objects in both the GET and DROP
commands. Using quotes this way might be
second nature to a Loco programmer, but it is
likely to be very confusing for an adventurer who
knows nothing about the language. In order to
allow the more natural GET SWORD to be used, we
must define SWORD as follows:

TO SWORD
OP "SWORD

END

Of course, we'll have to do this for each noun used
in the game.

The command LOOK will print a description of
the current room, a list of its contents, and the
possible exit routes from the room. To do this we'll
need two further lists — a description list and an
exit list. In order to allow for fairly long
descriptions taking up more than one line across
the screen, the description list is defined as a list of
lists. For example:

MAKE "DESCRIPTION [[YOU ARENDING Al THE •

ENTRANCE][TO A CAVE]]

To keep a record of how the roo n each other,
every room is assigned a number. The exit list is
simply a list of sublists each consisting of a
direction and a room number. Thus:

MAKE "EXIT.LIST IN 
4

11
E 6]]

We can now define

TO LOOK
PRINTL :DESCRIPTION
PRINT"
PRINT [YOU CAN SEE:]
IF EMPTY? :CONTENTS THEN PRINT [NOTHING
SPECIAL] ELSE PRINT :CONTENTS
PRINT -
PRINT [YOU CAN GO:] PRINT.EXITS :EXIT.LIST
PRINT"

END

Two special print routines have been used in this
procedure to make the display easier to read.
PRINTL is used to print several lines of text.

TO PRINTL :LIST
IF EMPTY? :LIST THEN STOP
PRINT FIRST :LIST

PR INTL BUTFIRST :LIST
END

PR INT.EXITS prints the exits from the room without
printing the room numbers.

TO PRINT. EXITS :LIST
IF EMPTY? :LIST THEN PRINT " STOP
MAKE "EXIT FIRST :LIST
PRINT1 FIRST :EXIT
PRINT1
PRINT. EXITS BUTFIRST :LIST

END

We can describe everything that is known about a
room in the game by putting together the three
sublists: the description, the contents and the exits.

For example:

MAKE "ROOM.1 [[[YOU ARE STANDING AT THE

ENTRANCE][TO A CAVE]] [SWORD][[N 4][E 6]]]

Given that ROOM.1 is defined in this way, we could
split it into its individual components with the
following procedure:

TO ASSIGN.VARIABLES

MAKE "ROOM THING "ROOM1

MAKE "DESCRIPTION DESCRIPTION :ROOM

MAKE "CONTENTS CONTENTS :ROOM

MAKE "EXIT.LIST EXIT. LIST :ROOM

END

THING "ROOM.1 is an alternative to :ROOM.1; it
means 'the contents of the variable ROOMY. We
will discuss the reason for using this form shortly.
The subprocedures are defined as follows:

TO DESCRIPTION :ROOM

OUTPUT ITEM 1 :ROOM

END

TO CONTENTS :ROOM

OUTPUT ITEM 2 :'IOM

END

TO EXIT.LIST :

OUTPUT:ROOM

END

As it stands, this procedure works for ROOM .1 only.
We need to extend it so that it can be used more
generally for any room. We do this by using a
global variable, HERE, which contains the number
of the current room. Let's say it is 2 at the moment.
The ioGo primitive WORD outputs a word
consisting of a combination of its two inputs (thus,
WORD "ROOM. :HERE would output ROOM.1). We
then assign this name to the variable ROOM.NAME
— thus : ROO M.NAM E is ROO M.2. We can now assign

lilt. I IONIF. OMPUTER ADVANCED COURSE 775


