
6809CODUMACHINE CODE
_

BREAK EVEN POINT

We continue to develop our debugging
program. First, we will complete the module
of routines to handle breakpoints, which we
started coding in the last instalment (see
page 777). Then we look at the procedures
necessary to handle each of the commands.

We have yet to define two subroutines for the
Breakpoint module — one to remove inserted
breakpoints and the other to restore the original
op-code where we have placed a temporary SWI-
opcode. The first routine we need to consider is
called Uninsert-Breakpoint (from the
Breakpoint-Table).

Up to 16 breakpoints have been allowed for in
the Breakpoint-Table (BPTAB). To remove one we
must be supplied with its number as an offset (in
the range 0 to 15) into this table. The table entry is
removed by shifting all subsequent entries in the
table back one place (two bytes) and
decrernenting the Number-Of-Breakpoints.

UNINSERT-BREAKPOINT
Data:

Number-Of-Breakpoints is an eight -bit value
Breakpoint-Number is an eight-bit counter
Breakpoint-Table is a table of 16-bit addresses
Entry-to-be- Removed is an eight-bit offset (with a
value in the range 1 to 16)

Process: Uninsert -Breakpoint
Decrement Number-Of-Breakpoints
If Entry-to-be-Removed <= Number-Of-
Breakpoints (one before last) THEN

For Breakpoint-Number= Entry-to-be-
Removed to Number-Of-Breakpoints (one
before last)
Move Breakpoint-Table (Breakpoint-Number +
1) to Breakpoi nt-Table(Breakpoint- Nu m ber)
Move Removed-Values (Breakpoint- Number + 1)
to Removed- Values(Breakpoint-Number)
End For

End it
End of Process
The parameter Entry-to-be-Removed can be
passed in B. The counter Breakpoint-Number can
then also be placed in B, and will get automatically
set to its correct initial value. After comparing it
with Number-Of-Breakpoints, it must be
decremented to form the offset into the eight-hit
Removed-Values table and then shifted
(multiplied by two) to form an offset into the
16-bit Breakpoint-Table. We can keep the eight-
bit offset in B and the 16-bit offset in A. The
addresses of the entries in the two tables can be in X
and Y, so we can use auto-increment to step

through the table. The 16-bit entry can be shifted
through U, but the eight-bit entry will have to use A

'again.
The last process used in this module physically

removes a breakpoint by replacing the SWI-
opcode with the original op-code from the table of
Removed-Values.

UNSET-BREAKPOINT
Data

Breakpoint -Number is the eight-bit offset
into Breakpoint-Table

Process:
Get value in Removed- Val ues(Breakpoint-
Number)
Store it in address in Breakpoint-Table
(Breakpoint-Number)

We will assume that the parameter Breakpoint-
Number is passed in B in the usual form as a
number in the range from one to 16, which must be
convened to function as an offset into the tables.

We are now at the stage where we can start
constructing a module to execute the eight single-
letter commands that operate the system (see page
758). A number of these commands can be
directly executed by the routines that we have
already written. However, for the sake of
completeness and a proper modular structure we
shall incorporate calls to them from this module.

The command B, to insert a breakpoint, is
covered completely by the routine Insert-
Breakpoint (BP01). In this module, therefore, we
simply need:

CMDB BRA BP01

Command U, to Un-insert a breakpoint, is almost
covered by the routine that we have just written
(BPO4). However, we must first get the address of
the breakpoint to be removed and search the
Breakpoint-Table to find that address. If it is not
there, then we ignore the command; if it is there,
then we can pass the offset to the subroutine at
BP02.

COMMAND U
Data:

Prompt is to be displayed
Breakpoint-Address is the input
Breakpoint-Table
Breakpoint-Number

Process:
Display prompt
Get Breakpoint-Address
Set Breakpoint-Number to 16
While Breakpoint-Table (Breakpoint-Number)
<> Breakpoint-Address

Breaking The
Code

PROGRAM MEMORY

SC0f0 LIlA

SOOF1
SCOF2
SCOF3
SCOF4 I DEC
SGOF5
SCOF6
SCOF7

SCOft
/COM

The debugger inserts
breakpoints in the object code
under test by first saving the
code horn that address into the
Removed Values Table and
incrementing the Number Of
Breakpoints Counter, and then
by overwriting The contents of
the breakpoint byte with the
SW I op-code. The Removed
Values Table looks like a stack
but is, in fact a heap, so values
can be taken from any byte
within it, not just from the last
byte entered. When a breakpoint
is removed, the appropriate
Removed Value is copied from
the table back into Program
Memory, and the redundant byte
is eliminated by moving down
all the table bytes above it in
memory, and, finally,
decrernenting the Number Ot
Breakpoints counter

THE HOME CONtBUTER ADVANCED COURSE 795

