
GUIDELINES
As more memory becomes available on
microcomputers, the techniques used to
guide the user through the workings of a
program can become more sophisticated.
Here we discuss the design and
implementation of general-purpose 'help'
routines that may be incorporated into your
own programs.

Memory is now cheap. The next generation of
home computers, which may have a minimum of
128 Kbytes of RAM, will leave most of us with far
more memory than even our most ambitious
programs will ever require. Throughout the
history of computing, a shortage of memory has
been the major excuse for failing to provide users
with sufficient instructions, sensible error
messages or on-line help. Now there is no excuse.

There are three main user aids that can be
provided within a program: instructions, 'help'
pages and 'signposts'. Instructions take two forms.
They can be given in a single block at the
beginning of the program, or they may be supplied
as required throughout the program (as prompts
for user input, for instance). Ideally, both should
be available to the user.

In their simplest form, instructions may simply
be a page — or several pages — of text explaining
in clear English how to use the program. The text

input (`?' is common, or you could use 'I') triggers
a call to the instructions subroutine. It is a good
idea to create a standard 'display instructions'
command, and modify any library input routines
to accept it. Don't forget to modify any prompts
used in your routines so that 'Press any key for
more...' becomes 'Press any key for more (or "I"
for instructions)'. This will give you a standard
format that will be used in all your programs.

But instructions need not be text-only.
Diagrams may be included, and the instruction
routines can be developed to give examples and
allow the user to practise and learn. Such
instruction routines are common in programs that
run scientific experiments — here the user may be
required to perform a specified task to a particular
level of skill before being allowed to progress to the
main program. Such 'teaching' routines are not
easy to develop because they must simulate the

Words Of Advice
Micropro Wordstar provides a
top-selling example of
command-driven software with
'on-line help'. The on-screen
help menu can be abbreviated
or removed by the user, but an
enormously detailed Help file
structure is always available at a

single keypress

can be held in strings or DATA statements within the
prop-am, and will be displayed when required by a
call to a subroutine written for this purpose. At the
start of the main program, the user is asked if
instructions are needed; if they are, the subroutine
is called. Thereafter, other routines that accept
user input should be tailored so that a specified

behaviour of the rest of the program, as well as
evaluating the user's performance. It is well worth
the attempt, however, as designing this type of
routine will give an indication of the problems that
the main program will present to the user.

In a similar fashion, 'help' pages may be called
up to explain the operation of particular parts of
the program. This facility is found in many
systems, where it is available to explain the use of
commands — the Unix operating system, for
example, allows the entire user manual to be
accessed as on-line help! Providing help in your
own programs need be no more difficult than
supplying instructions: at each appropriate point,
simply allow the user to enter a help request
instead of the usual input — when this happens the
program should call the relevant help routine. A
complex program is likely to require a large

526 THE HOME COMPUTER ADVANCED COURSE

11


