
0 Basic Programming
I

programs will start by calling FINDREC. This sub-
program is based on a search routine similar to the
one described on page 273. The chief difference
this time is that (in all probability) no two data
items will be identical, since few people have
completely identical names.

There are two ways a search can be conducted.
One is to search through an unordered pile. This
makes the searches slower than they need to be. In
the worst case, the routine might have to search
through all of the data items before locating the
item being searched for. Searching through an
unordered pile does have the advantage, however,
that sort routines are not required every time a
record is added, deleted or modified.

If the data is ordered in some way — either
numerically or alphabetically, for example — the
program will have to search through only a small
fraction of the items in the list. The longer the list
is, the more efficient a binary search becomes
compared with searching through an un-ordered
pile. In fact, if there is enough data in the file to
warrant it, the sorting of the records after a
modification can be speeded up by conducting a
preliminary search to locate the first and last
occurrence in the array of the initial letter of the
surname in the record involved.

Another way to speed up the sort routine
might be to maintain a look-up table of the
locations in the array of the first occurrence of
each letter of the alphabet. This table, however,
would need to be carefully maintained (updated)
whenever any changes were made to the data.

The subject of searching and sorting is one of
the largest areas in programming, and books have
been devoted to it. We will not attempt to find the
optimal solution for our address book program
since this depends on a large number of factors,
including the number of records in the file and
whether or not disk drives are available.

A program in pseudo-language for a search
through the elements in the NIOD^LDS array is now
given. The string variable KEY$ is the key for the
search. The term `key' here means the identifying
group of characters used to specify which record
(or records) is required.

Prompt for name to be searched
LET KEYS = name to be searched)
LET BTM =1
LET SEARCHING =0
LET TOP = SIZE
LOOP while (BTM < = TOP) AND (SEARCHING = 0)

LET MID = INT I(BTM + TOP)/2)
IF KEYS = MODFLDS(MID)

THEN

PRINT NAMFLD$(MID)
PRINT STRFLDS(MID)
PRINTTWNFLDS(MID)
PRINT CNTFLDS(MID)

PRINT TELFLDS(MID)

LET SEARCHING =1
ELSE

IF KEY$> MODFLD$(MID)

338 THE HOME COMPUTER COURSE

THEN LET BTM = MID+1
ELSE LETTOP= MID-1

ENDIF
ENDIF

ENDLOOP

IF SEARCHING = 0 THEN PRINT "RECORD NOT
FOUND"

END

This piece of pseudo-language is closely based on
the program used for searching football scores on
page 275, but you will see that it does have a
suitable output if the record cannot be found (the
last PRINT statement), which will be executed only
if the loop fails to locate an exact match between
KEY$ and MODFLD$(MID).

Unfortunately, an exact match is rather
unlikely, even if the name and telephone number
you want is in the database. This is because the IF
KEYS = MODFLDS statement is totally inflexible; it
does not allow for the slightest difference between
the character string input by the user in response
to the prompt and the character string stored in
MODFLD$(MID). In an ordinary address book, the
eye scans down the page and is able to allow for
all sorts of small differences in the actual
representation of the record and what you are
looking for. The computer cannot do this.

There are, however, ways of avoiding this,
although they all involve extra programming
effort and will take a little more time to run. The
first improvement would be to check only the
surname first, and for this reason it makes sense
for the name stored in MODFLDS to be in the form
SURNAME (space) FORENAME. We developed a
routine for reversing the order of a name earlier in
the Basic Programming course (see `Basic
Flavours') and this can be incorporated as a
subroutine within the ADORED routine when the
MODFLDS field is created.

Having successfully located the first occurrence
of the required surname, the FINDREC routine
should then check the forename part of that
element to see if it is identical to the name input
(KEY$). If it is, there is no problem — the record
has been located. If it is not, however, the problem
starts to get complicated, and we have to plan our
strategy carefully. We could, for example, search
through all the forenames, and if an exact match is
not found, start looking for an approximate
match. The difficulty here is: what exactly
constitutes an approximate match?

Instead of the "RECORD NOT FOUND" message in
the program above, it might be better to give a
message like "EXACT MATCH NOT FOUND, TRY FOR A
CLOSE MATCH? (YIN)?" What do the words `close
match' mean? Is Bobby a close match to Robert?
How about Robrt? Both of these represent
possible inputs in the FINDREC program. Let's try
to define what we mean by a close match and then
start to develop a program in BASIC to find the
closest match to an input string.

Suppose the string in memory was ROBERT.
Which of the following is the closer match: ROB or
RBRT? The second gets four letters right out of six,

