
, MACHINE CODE/PART 14

expressed as $08+SFB. The result of this sum is
$103, which is S03 as a single-byte number.

This kind of representation is known as two's
complement: the complement of a single-byte
number is formed by subtracting it from $100.
There is another representation known as one's
complement, and the two are related in an
interesting way. Consider this:

$05 = 00000101 	pinery
SFA = 11111010 	one's coMPlealest

SFS = 11111011 	two s complement

05 S FA=S

The one's complement of a single-byte number is
formed simply by complementing or negating
each binary bit of the number. If one is added to
this result, then the two's complement of the
number is produced. A number and its one's

Answers To Exercises On Page 259
1) The following program reverses the order of the
character string stored at LABL1:

6582
;
ORIGIN ORG $7000
LAST 	EGO SOD
LABL1 	DB 	'THIS IS A MESSAGE'

TERMNS DE LAST I

BEGIN 	LDX IM$FF
LDA itLAST I
PHA

LOOPO 	I NX
LDA LABL1 , X
PHA
CMP ttLAST1

ENDLPO BNE LOOPO
CLRSTK PLA

BEGI N I LDX StSFF
LOOPS 	I NX

PLA
STA LABL I , X
CMP $LAST1

ENDLP I BNE LOOP I
RTS

complement always total SFF. while a number and
its two's complement always total $00 (actually
$100). It is conventional then, in signed integer
arithmetic, to regard the numbers from $00 to 87F
as the positive numbers, (0 to 127) and $80 to SFF
as the negative numbers (-128 to —1). If you
compare the binary representations of these
numbers you will notice that all the negative
integers have bit 7 set, while in the positive
numbers bit 7 is always reset. Accordingly, bit 7 is
known as the sign bit of a signed number, and the
carry flag of the processor status register is set or
reset as a copy of bit 7 of the result of the last
arithmetic or logical operation.

There is no easy way round this potentially
confusing subject, and it simply has to be
approached when you start doing signed
arithmetic. Fortunately, once its implications are
understood, it can be handled mechanically by
rule-of-thumb methods. These methods, and the
multiplication and division alogrithms, are the
subject of the next instalment of the course.

register onto the stack. This means that the characters
of the string at LABL1 are interspersed on the stack
with successive values of the processor status
register.

180
ORG $C0 00

LAST 1 	EQU SOD
LABL I 	DB 	'THIS IS A MESSAGE'
TERMN8 DB 	LAST 1

BEGIN

LOOPO

LO
LD
PUSH
INC
LD
PUSH
Cr?

ENDLPO JR
CLRSTK POP

BEGIN! LO
LOOP! 	INC

POP
LO
CP

ENDLP1 JR
RET

LABL 1-1
A, LAST I
AF
Ix
A,(IX+0)
AF
LAST!
NZ , LOOPO
AF

IX, LABLI -1
IX
AF
(IX+0) ,A
LAST!
HZ, LOOPI

In the 6502 version, the code between LOOPO .and
ENDLOOPO uses X-indexed addressing in a loop to
load the characters one-by-one from LABL1, and push
them onto the stack — having first pushed the ASCII
value of the terminator character to mark the bottom of
the stack. The last character pushed onto the stack is
also the terminator, this time determined from its
position as the last character in the string. This
concludes the loop, and the terminate character on top
of the stack is then cleared at CLRSTK.

The Z80 version uses IX in indirect addressing
mode to load the accumulator from LABL1 onwards.
and pushes not only the accumulator but also the flag

The code between BEGIN1 and ENDLP1 in both
versions is a reflection of the previous loop and uses
the same techniques. but this time pulling the
character string off the stack in reverse order, and
storing it at LABL1 onwards. The loop finishes when
the terminator character is found at the bottom of the
stack.

Notice how important it is to balance stack pushes
and pulls, and that the most difficult part of the
problem is deciding how to handle the extreme
conditions — what to do at the start of the loops, how
to terminate them, and what 'tidying-up' (if any) is
then required.

218 THE HOME COMPUTER ADVANCED COURSE'

