
ramAVE ALREADY TRIED THAT ONE

I, PROGRAMMING PROJECTS/HANGMAN GAME

SWINGTIME

Progress Report

The game in progress, showing
the development of the hanged
man and the progression of the
word

Hangman is a traditional wordgame that is
easily implemented on home computers and
can prove educational. Programming a
Hangman game provides us with an
opportunity to explore string manipulation.
We discuss the structure of a simple version
of the game, and give listings for the BBC
Micro and the Spectrum.

Probably everybody has played a game of
Hangman at some time. The object of the game is
simply to guess the letters in a word. The only
information given is the number of characters in
the word, all of which are represented by dashes. A
correctly guessed letter is displayed in its proper
position, and an incorrect guess causes a part of a
picture of a man on a scaffold to be drawn. In our
program, there are 10 parts to this drawing, which
is shown on the right-hand side of the screen. If all
10 parts are completed before you've filled in all
the letters in the word, then the man is hanged and
you've lost the game.

The basic principle of our program is very
simple. It involves checking to see if a letter entered
at the keyboard is contained in a randomly
selected 'secret' word (one of 11 words held in DATA
statements at the end of the program). If the
guessed letter is present, it is displayed on the
screen in its correct place. If the letter is not
present, the program must display it anyway, to
remind the player that it has already been used. In
addition, of course, the program must then be
made to jump to a subroutine that will draw a part
of the hanged man.

The words that our programs use are stored in
lines 1020 and 1030 in both versions. There is no
reason why you can't add to these, using more DATA
statements. But if you do add your own lexical

brain-teasers, you must remember that they
should not be more than 10 letters long. (Although
this restriction could be lifted by altering lines 30
and 50.) Also, the total number of words in the
DATA statements must be added up, and the value
of N in line 20 altered accordingly.

At the beginning of the program, all of the words
are read into an array. One of the elements of the
array is picked at random, and a line of dashes
corresponding to the length of the word is
displayed on the screen. The rest of the game
consists of a repetitive loop. When a letter is
entered from the keyboard it is screened: if it is
more than one letter, or not a character at all, then
the program makes a BEEP and loops back for
another input. The letter is also checked against
the list of letters that have already been tried in the
game. If it has been used before, then a warning is
flashed on the screen and a new letter read.

If the trial letter is acceptable, it is added to the
displayed list of used characters, and then
compared against each letter of the word in turn. If
it matches in any position, it is put up on the screen
in place of the corresponding dash. If no match is
found in the whole word, a subroutine is called to
draw a part of the hanging scene.

If the player has had 10 wrong guesses then the
man is hanged, a short consolatory tune is played
and a new word is selected. Alternatively, if all the
letters of the word have been correctly placed, a
congratulatory musical phrase is played.

Our two versions of the program can be easily
adapted to most home micros. The subroutines to
draw the man and the scaffold, of course, need to
be especially adapted to the graphics capabilities of
individual machines. Programmers with an
interest in creating interesting screen displays may
like to elaborate on the drawn result: a hanged man
gently swinging in the breeze if the player fails to
win, perhaps?

Other refinements can also be added to the
game. We suggest that it may be a good idea to add
a check at the beginning of the program to see that
a selected word has not already been used. As the
program stands, the selection of the word is a
purely random matter, and the same word could
be chosen twice in succession.

Even more helpful would be a routine to screen
the inputs so that only upper case letters were
accepted as trial letters. (The program as given will
accept any character as a trial 'letter') Lower case
letters, numbers, and symbols could be checked by
their ASCII codes and rejected. As it is given here,
however, our prop-am does play a good game of
Hangman, and offers opportunities for
adventurous programmers.

504 THE HOME COMPUTER ADVANCED COURSE


