
TECHNI

Properly Documented
Listing 1
BASIC
(a)10 INPUT A,8

20 C=A*31536000
30 D=B*2592000
40 E=C+1)
50 PRINT E

PASCAL
(b)program abode (input,outPut);

var a,b,c,d,e:integer;
begin
read(a,b);
c;=a*31536000;
d;=b*2592000:
e:=c+d;
writeln(e);
end.

Listing 2
BASIC
(a) 10 AYEAR=31536000

20 AMONTH=2592000
30 PRINT'Enter your age (years then months searateda comma) ':
40 INPUT NYEARS,NMONTHS
50 YSECS=NYEARS*AYEAR
60 MSECS=NMONTHS*AMONTH
70 AGEINSECS=YSECS+MSECS
80 PRINT'Your age in seconds is (approximately) ':AGEINSECS

PASCAL
(b) program ageinseconds (input,outOut);

const
ayear=31536000;
amonth=2592000:

var
nyears,nmonths,ysecs,msecs,ageinsecs:integer;

begin
write('Enter your age (years then months sepal
read(nyears,nmonths);
ysecs:=nyears*ayear;
msecs:=nmonths*amonth;
ageinsecs:=ysecs+msecs:
writeln'Your age in seconds is (aPProximatel

end.
y) '.ageinsecs):

'ated by a comma) ');

Listing3
BASIC
(a

)
10
20
30
40
50
60
70
80
90
100

110
120
130
140

REM 'AGEINSECONDSJune 1984
REM INPUTs age in years and months (y,m)and
REM uses an approximate conversion (month = 30 days)
REM to give age in seconds.
REM
AYEAR=31536000:REMseconds in 365 days
AMONTH=2592000:REMseconds in 30 days
PRINT'Enter your age(years then months separated by a comma)
INPUT NYEARS,NMONTHS
REM as in secs is(age in years * secs in year)plus

(months since last birthday * secs in month)
YSECS=NYEARS*AYEAR
MSECS=NMONTHS*AMONTH
AGEINSECS=YSECS+MSECS
PRINT'Your age in seconds is(approximately)';AGEINSECS

':

PASCAL
(b)program ageinseconds (inPut,output):

/* June 1984
reads age in years and months (y.m) and uses an
approximate conversion (month = 30 days) to give
age in seconds.*/

const
ayear

=
31536000;/* seconds in 365 days */

amonth
=
2592000;/* seconds in 30 days */

var
nyears,nmonths.ysecs,msecs,ageinsecs:integer;

begin
writeeEnter your age ('jeers then months seParal
read(nyears,nmonths);
/* ase in secs is (age in years *.secs in year)

(months since last birthday * secs in month)
ysecs:=nyears*ayear;
msecs:=nmonths*amonth;
ageinsecs:=ysecs+msecs;
writeln('Your age in seconds is (approximately)

end.

ed b,.1 a comma) '):

plus
*/

".aqeinsecs):

language to language. BASIC uses the REM
statement. The word REM must appear at the front
of your comment and then the interpreter will
ignore everything it finds up to the next end-of-
statement marker (: or (Cr)). In other languages
(PASCAL, PL/1, PROLOG, etc.) comments are
bracketed by /* and */ (sometimes and 1), and
anything between the marks is ignored by the
compiler. An advantage of this system is that
comments can run over more than one line. The
disadvantage is that, if you forget the second */,
the rest of your program is taken to be a comment
and will be ignored!

Use comments wherever you feel some
explanation may be needed: when you are
defining constants, initialising variables,
beginning a program, beginning a new procedure
(subroutine), defining a function, or writing some
code that isn't readily understood because of its
complexity. Comments need not be long or wordy,
and often just a reminder is needed. When you are
trying to understand the logic of last year's
adventure program, large blocks of general
comment that break up the code and do not give
enough detail can be more of a hindrance than a
help, so keep comments short and to the point. Put
them before tricky sections of code, and only put
them inside the code when their presence is not
likely to interfere with reading the logical structure
of the program. Our final program (Listing 3)
shows some examples as guidelines.

External documentation, in the form of
handbooks and written specifications, is the
hardest and most tedious to produce. For
programmers, studies have shown that written
documentation is usually only consulted as a last
resort. However, when it is used, it can save a lot of
effort. If your program is not too long and is well
documented internally, it is unlikely that you will
ever find a need for external program
documentation. User documentation is another
matter and will be discussed later in the series.
Nonetheless, it is often useful to have some written
documentation to hand when it comes to revising
an old program or to debugging a new one. One of
the ways in which the so-called 'fifth generation'
languages aim to improve programmer
productivity is by generating the documentation
automatically. This will be achieved by using
information from the design phase of a program's
development. Not surprisingly, one of the best
ways to document your own programs is to use this
same trick.

Keep a file on your programs as you write them.
Put into it all the notes you make as you design the
program, including drafts of algorithms and
flowcharts. Most importantly, keep the final
version of the flowchart you have used to write the
code from. If you have a printer, keep a listing of
the finished program. Note that, in our completed
version of the program, the first comment includes
the program name and a date. Whenever you
modify a program, change the date on it so that
you know that it is the latest version.

THE HOME COMPUTER ADVANCED COURSE 355


