
`heuristic' programs.
An heuristic program enables the computer to

detect alterations in its opponent's strategy, and
modify its algorithm accordingly. Such a program
would have to keep a record of, let's say, the last 50
choices of both opponents, in an array. It
constantly scans through this track record applying
a statistical technique known as `correlation'.

This involves the computer in making hundreds
of comparisons between the player's choice and his
previous choice, or the one before that, or the
choice made five turns ago. The computer
performs the same operation on its own choices.
Let's consider the correlation between the player's
move and his previous move, for example. We'll
call Scissors — element 1, Paper — element 2, and
Stone — element 3. First we must set up a three by
three array, called say CORR1, because it represents
our first correlation test. Now we must work
through our game history, looking at the player's
choices for the last 50 moves. Every time he
followed Scissors (1) by Stone (3), we add one to
the element CORR1(1,3); when Stone (3) is
followed by Paper (2), one is added to element
CORR1(3,2) and so on.

If the player is making truly random choices,
then there should be approximately equal values in
each element of CORR1 — but this is very unlikely
to be the case. So, if the player chose Paper last,
then the element in row 2 (Paper) of CORR1 with
the largest value will give us the best guess as to
what he will choose next. The greater the
difference between the elements in any row, the
better the correlation is, and the more reliable the
prediction will be. However, it is possible that there
will be little correlation between the player's choice
and his previous choice, in which case we must also
perform correlation calculations on the second to
last choice, or between the player's choice and the
computer's previous choice.

A problem arises if the various correlation
routines all predict different results for the player's
next move. The program has to decide which is the
most reliable advice. In this simple game, all it
needs to do is see which test has the most
pronounced correlation. For example, the CORR1
array might predict the following probabilities:
Scissors 51%, Paper 29%, Stone 20%; whereas
CORR2 (which, say, compares the player's choice
with the computer's last choice) might give:
Scissors 24%, Paper 60%, Stone 16%. Clearly
CORR2 has the better correlation, so its prediction
should be selected. An intelligent games program
will in fact frequently consist of a number of
subroutines, each working on diffe:cent strategies,
and each advising the main routine of the best
move. The playing routine can regard these
subroutines as a `committee', and act on a majority
decision. But as the game proceeds, it can award
marks to each routine according to whether its
advice was good or not.

If there does turn out to be some correlation
between the player's moves or choices and the
previous moves of the computer, then it is possible

to program in some kind of `bluffing' factor that
will deliberately mislead the player. This works
best in gambling games, where the stakes increase
as the game continues, and it is worthwhile losing
the early rounds to win the later ones.

At the State University of New York at Buffalo
(reported in Scientific American, July 1978) a
collection of poker-playing programs (all of them
with a learning capability) were set against each
other for several thousand games. The overall
winner was a program called the Adaptive
Evaluator of Opponents (AEO), which made an
initial judgement about the strength of its
opponents' hands, and modified this estimate as
each game proceeded. The SBI program, `Sells
and Buys Images', did surprisingly badly — its
technique was to bluff in order to `sell' a false image
to its opponents, or effectively to `buy' the playing
style of others. The Bayesian Player (BP) tried to
make inductive inferences, and improve its play by
comparing the predicted consequences of its
actions with the actual consequences. Finally, the
Adaptive Aspiration Level (AAL) program
attempted to mimic a feature believed to exist in
human playing: adapting the level of aspiration
(that is, the degree of risk it is prepared to take)
according to its past record and current status.

No two chess programs or other artificially
intelligent routines work in exactly the same way.
But by experimenting with the techniques we've
outlined here on progressively more complicated
games, you may eventually be able to join the
exclusive club of chess program writers.

Slow Learner
5 CLS Th s program, cased on the

10 DIM Cl (3,3),C2(3,3),C3(3,3) game Scssors— Paper-

20 CR=O Stone, illustrates how a

30 FOR 1=1 TO 3
program can 'learn' as a gave
progresses. The computer

40 IF C1(PL,I) >CR THEN BG=I:CR=C1(PL,I) selects from thu numbers 1,2
50 IF C2(PP,I) >CR THEN BG=I:CR=C2(PP,I) and 3, compares its choice

60 IF C3(P3,I) >CR THEN BG=I:CR=C3(P3,I) with the one you havetypedin

70 NEXT I and adjusts the score. The

80 =CT6G 1
GET statement has been used 
so that you can simply press

90 IF BG=1 THEN CT=3 the three number keys in rapid

100 GET PT: IF PT=O THEN 100 succession. It you attempt to

110 REM LINE 100 WAITS FOR A DIGIT TO make your sequence andom,

120 REM BE PRESSED.
you should fine that after a
couple hund red key

130 IF CT=PT-1 THEN CS=CS+1 presses,, 'he computer's score
140 IF CT=PT-2 THEN PS=PS+1 wil pull ahead. It is possible

150 IF CT=PT+1 THEN PS=PS+1 to tool this program and

160 IF CT=PT+2 THEN CS=CS+1
hence continueto win, but

170 CLS
more sophisticated routines
car be added to it to prevem

180 PRINT "YOUR CHOICE:";PT you from doing this

190 PRINT "MY CHOICE: ";CT
200 PRINT "YOUR SCORE IS ";PS
210 PRINT "MY SCORE IS ";CS
220 C1 (PL,PT)=Cl (PL,PT)+1
230 C2(PP,PT)=C2(PPPT)+1
240 C3(P3,PT)=C3(P3,PT)+1

250 P3=PP
260 PP=PL
270 PL=PT
280 G OTO 2C

THE HOME COMPUTER COURSE 363


