
A.B.C.D

Drawing these on a k -map, together with the 'invalid input' conditions (X), gives us:

From this k -map we can see that the expression reduces to:

$$
\mathrm{A} \cdot \mathrm{D}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{D}
$$

And thus, our 'thirty day month' signal circuit can be constructed:

Example 2: Odd Numbers

Given that the numbers 0 to 15 can be coded by four binary digits (0000 to 1111), we are asked to design a circuit that will accept the four bit code as an input and output a 1 if the output represents an odd number greater than two.
The first thing we must do is set up a truth table for all the possible conditions:

DECIMAL	INPUTS				
NUMBER	OUTPUT	B	C	D	S
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

From this truth table we form the following Boolean algebra expression, for all the conditions where S is true $(=1)$:

$$
\begin{aligned}
& \mathrm{S}=\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}+ \\
& \mathrm{A} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}} \cdot \mathrm{D}+\mathrm{A} \cdot \overline{\mathrm{~B}} \cdot \mathrm{C} \cdot \mathrm{D}+\mathrm{A} \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \cdot \mathrm{D}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}
\end{aligned}
$$

The Karnaugh map for this expression is:

From the k-map, three groups of fours can be isolated, represented by this expression:

$$
S=A \cdot D+C \cdot D+B \cdot D
$$

and this can be further simplified using the distributive law to get:

$$
S=D \cdot(A+B+C)
$$

Consequently, the circuit can be designed:

In the next instalment, we will review the more important aspects of the Logic course so far, and provide a comprehensive set of review exercises.

Exercise 5

1) Simplify the following Boolean expressions, using Karnaugh maps:
a) $A \cdot B \cdot \bar{C}+A \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{C}+\bar{A} \cdot B \cdot C+A \cdot B \cdot \bar{C}$
b) $B+C+B \cdot \bar{C}+A \cdot C$
c) $A \cdot \bar{B} \cdot D+\bar{A} \cdot D+A \cdot B \cdot C \cdot D+A \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}$
2) A circuit is to be designed that will accept the binary representations of the whole numbers between 0 and 7 inclusive. The circuit is to give an output if the number input is odd or if it is a multiple of three (i.e. 3 or 6). By drawing a truth table and obtaining a simplified expression, draw a logic circuit that vill carry out this function.

Answers to Exercise 4 on Page 93

