$S = \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.\overline{D} + A.\overline{B}.\overline{C}.D + A.\overline{B}.\overline{C}.D$

Drawing these on a k-map, together with the 'invalid input' conditions (X), gives us:

From this k-map we can see that the expression reduces to:

 $A.D + \overline{A}.B.\overline{D}$

And thus, our 'thirty day month' signal circuit can be constructed:

Example 2: Odd Numbers

Given that the numbers 0 to 15 can be coded by four binary digits (0000 to 1111), we are asked to design a circuit that will accept the four bit code as an input and output a 1 if the output represents an odd number greater than two.

The first thing we must do is set up a truth table for all the possible conditions:

DECIMAL NUMBER	INPUTS				OUTPUT
	A	B	C	D	S
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

From this truth table we form the following Boolean algebra expression, for all the conditions where S is true (= 1):

 $S = \overline{A}.\overline{B}.C.D + \overline{A}.\overline{B}.\overline{C}.D + \overline{A}.\overline{B}.C.D + A.\overline{B}.C.D + A.\overline{B}.C.D + A.\overline{B}.C.D + A.B.C.D$

The Karnaugh map for this expression is:

From the k-map, three groups of fours can be isolated, represented by this expression:

S = A.D + C.D + B.D

and this can be further simplified using the distributive law to get:

S = D(A + B + C)

Consequently, the circuit can be designed:

In the next instalment, we will review the more important aspects of the Logic course so far, and provide a comprehensive set of review exercises.

Exercise 5

1) Simplify the following Boolean expressions, using Karnaugh maps:

a) A.B.C + A.B.C + \overline{A} .C + \overline{A} .B.C + \overline{A} .B.C + \overline{A} .B.C b) $\overline{B + C}$ + \overline{B} .C + \overline{A} .C

c) $A.\overline{B}.D + \overline{A}.D + A.B.C.D + A.B.\overline{C} + \overline{A}.B.\overline{C}.D$

2) A circuit is to be designed that will accept the binary representations of the whole numbers between 0 and 7 inclusive. The circuit is to give an output if the number input is odd or if it is a multiple of three (i.e. 3 or 6). By drawing a truth table and obtaining a simplified expression, draw a logic circuit that will carry out this function.

Answers to Exercise 4 on Page 93

THE HOME COMPUTER ADVANCED COURSE 107