
17 116

BONUS,LEVEL and HITS and returns a (possibly
new) value for BO N U S.It might be written thus:

6030 IF LEVEL>2 AND HITS=10 THEN
BONUS=BONUS*LEVEL

6040 IF LEVEL=6 OR BONUS>2000 THEN
BONUS=BONUS+100

To cover the outcome of each conditional
expression, we need to consider the inputs to each
that would cause an output of 'yes' or 'no'. In both
decisions we are looking at the effects of two
variables combined by a logical operator (AND and
OR). This means that we have to take the combined
values of the variables and not their individual
values into consideration. To see why, consider
what would happen if we tested values for LEVEL of
4 and 1 and for HITS of 10, 5 and 20 in the first
decision. When LEVEL=4, the three values of HITS
are tested but when LEVEL=1 they are not. This is a
case of part of a decision 'masking' another part.
So that we can test each part separately, it is best to
simplify compound decisions.

Looking at figure 3, we can see that with four
binary decisions there are V (-16) possible
outcomes and we must cover them all. A start is to
list the conditions for a yes or no outcome for each
decision like this:

1234

yesLEVEL> 2HITS-10LEVEL-6BONUS> 20000

noLEVEL-2
LEVEL<2

HITS<10
HITS>10

LEVEL<6
LEVEL> 6

BONUS-2000
BONUS<2000

These can then be used to derive the values for
representative test data. For instance, for the path
taking the route adfi (see figure 3), LEVEL must be
greater than 2 and equal to 6, HITS must be not
equal to 10 and BONUS may be any value (because
it is not involved). The values LEVEL=6, HITS=20
and BON US=150 would exercise this path — as
would many others, of course. The route abehj
could be tested with LEVEL=4, HITS=10 and
BON US=600 (don't forget we are talking about the
input value of BONUS that may later be multiplied
with LEVEL).

Equally importantly, the results that should be
produced by each set of test data should be
calculated before the test run so that the results can
be compared. The input data on their own will
merely test whether the program runs. To test that
it is doing what it should, the output must be
calculated (by hand) beforehand. A complete set
of test cases for this example is shown (left).

Equipped with a method of 'exercising' our
software, we now need a way of tackling a large
program so that the complexity does not become
overwhelming. It is here that another benefit of
structured programming is felt. Programs written
as a collection of independent modules arranged
in a hierarchy allow us to test each module
individually. Because the modules are arranged in
this way, we can start with the topmost module and
work down, testing each individual module only
when all of those above it have been tested, and we

Simple

LEVEL>2Y
ND HITS

..
 I

?

•

BONUS-
BONUS
*LEVEL

••*.e.

LEVEL-6y
i BONUS>
2900 ? ee. ...4

BONUS
BONUS + 100 ti

BONUS>._.
2000Y

Decision Masking
Simplifying compound decisions
and labelling the flowchart links
makes systematic testing easier

can use already-tested modules to provide data for
those lower in the structure.

The module being tested will have above it
(unless it is the first one), a fully tested driver
module. The modules below it, known as stubs,
are, so far, untested and therefore unreliable, so
they are simulated by short pieces of code that
simply return the appropriate test data when
called by the module being tested. This
arrangement is sometimes known as a test harness
and it is a framework into which module routines
can be put for testing. Figure 4 shows the principle.
Modules 1,2 and 3 have already been tested while
modules 5, 6 and 7 are simulated.

One final point must be stressed. Testing is an
important part of the program's life cycle and, as
such, deserves to be well documented. It pays to
keep records of the test data derived for a routine
so that, if it shows a bug later, the same tests will
not have to be repeated, or the testing can be
examined for where it was inadequate.

STUBS

e
i

"
 

3
LEVEL-6

?

Compound

BONUS-BONUS
•LEVEL

+100

Figure 3

Top-Down Testing
Testing is made much simpler by
the top-down approach, since
each module can be tested as it
is written, both in isolation and
in association with other tested
modules. The behaviour of
unwritten modules can be
simulated by writing 'stubs' —
code that artifically generates
examples of the module's
predicted output

,,,ALREADY
El] TESTED

SUNDER TEST

SIMULATED
'$(UNTESTED)

a
12

LEVEL>2 •HITS-10
?Y•?	•Y

THE HOME COMPUTER ADVANCED COURSE 607


