
START

J-0

J-J+1

J-10 ?

FINISH
Figure

Just Testing
A complete set of hand-
calculated test data for the
example illustrated in the
flowcharts might look like this:

OUTPUT
BONUS BONUS

6 10 200 1300
4 10 550 2300
7 10 550 3950
4 10 200 800
7 10 200 1400
1 20 2500 2600
1 20 550 550
6 5 200 300
6 50 200 300
4 5 2500 2600
7 50 2500 2600
4 50 550 550
7 5 550 550

INPUT
HITSLEVEL

.gM OGRAMZIG

ROUTINE CHECK UP
Our series of articles on prograimning
techniques should have provided plenty of
ideas for program design and development.
In this final part, we discuss the methods
that may be used to test a finished program.

One of the great advantages of programming in an
interpreted language like BASIC is that code can be
tested as it is being written. The programmer can,
at any time, type RUN and see what happens. On
most machines, it is a simple matter to 'break' into
a running program, PRINT the values of key
variables, change these values and then CO NTinue.
All this means that most of the more obvious
mistakes will have been spotted and corrected. Yet
this kind of ad hocdebugging is not a substitute for
testing, which must be done when the program is
in its complete and final form.

Validation testing aims to ensure that a program
will do exactly what it is meant to do. For any legal
set of input data it must produce the correct
output, and for any illegal input it must take the
appropriate actions. A simple way to test a
program might seem to be to give it a sample of
every legal input and then check that the results are
as expected. For almost every program, this will be
impossible, however. Even a program that takes
two integers, adds them and prints the result
would need to be tested for every possible integer
value! Yet this is only part of the problem, as every
illegal value would need to be tested, too.

Another possibility might be to look at every
'path' through the program. A particular path can
be found by following one route through a control
flow diagram (flowchart) from beginning to end.
Each branch on the way allows for alternate paths
and each loop adds more. Figure 1 shows a simple
program that is a loop containing a number of
IF. . . THEN statements. There are four paths
within the body of the loop and the loop is
executed 10 times. This means that the number of
unique routes from 'start' to 'finish' is 1,398,100 —
a staggering number for what would probably
amount to a dozen lines of code. Clearly, testing
this way would be out of the question.

So, if exhaustive data testing does not work and
exhaustive logic testing does not work, what does?
The surprising answer is that nothing does. There
is no way to test completely a reasonably complex
program in a realistic time. Partly for this reason,
testing follows the law of diminishing returns —
the number of errors found per unit of effort
decreases with each extra unit. So, the time to stop
is when the effort of doing it outweighs the cost of
the program's (as yet undetected) faults.

606 THE HOME COMPUTER ADVANCED COURSE

Four In Hand
Even so simple a construct as
this loop cannot be
exhaustively tested because of
the multiplicity of possible
input conditions: there are over
a million unique routes
through the loop

However, despite these drawbacks, it is worth
devising some method of testing. A reasonable
assumption is that if a machine will operate
correctly on one datum of a particular type it will
operate correctly on all data of the same type. So,
if a subroutine works for one positive integer
within its range, it should work for all positive
integers in that range. This leads us to a type of
testing known as 'equivalence class testing'. The
idea is to develop a set of test cases that are each
representative of a class of cases that should all
behave in the same way. Thus, if a piece of code
checks that an input is in the range 1 to 100, we
should test for inputs that are less than the lowest
value expected, greater than the highest value, and
within the expected range (value < 1; value> 100;
and 1--=<value=< 100).

Examining every logic path can also be
simplified to invoking each point of entry to all
routines (although ideally there should only be
one for each) and, inside each routine, covering
each possible outcome of every decision branch.
In figure 2 we have a routine for adjusting bonus
points in a game. It takes the input parameters


