OTHER SINCLAIR QL TITLES

Using QL Quill (Wright)

Using QL Easel (Logan)

Using QL SuperBASIC (Brown)
Using QL Archive (Garrott)

Quick QL
Machine Language

Alan Giles, M.A.

‘tP\!‘
MELBOURNE HOUSE
PUBLISHERS

© 1984 Alan Giles

All rights reserved. This book is copyright and no part may be copied or
stored by electromagnetic, electronic, photographic, mechanical or
any other means whatsoever except as provided by national law. All
enquiries should be addressed to the publishers:

IN THE UNITED KINGDOM —
Melbourne House (Publishers) Ltd
Castle Yard House

Castle Yard

Richmond, TW10 6TF

IN THE UNITED STATES OF AMERICA —
Melbourne House Software Inc.

347 Reedwood Drive

Nashville TN 37217

IN AUSTRALIA —

Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street

South Melbourne, Victoria 3205

Cataloguing in Publication

Giles, Aian.
Quick QL machine language.
Bibliography.
Includes index.
ISBN @ 86161 181 0.
1. Sinclair QL (Computer) — Programming. . Title.

001.64'24

EDITION: 7
PRINTING: F
YEAR: 9

321
BA987654321
87 86 85 84

654
EDC
0 89 88

Preface

The Sinclair QL is the first of a new breed of computer. It breaks away
from the moulds of both the cheap home computer and the more
expensive business microcomputer. The QL is neither of these devices,
and yet it tries to be both. Only time will tell whether a machine of this
size, performance and cost will find a niche in the market place.

The QL is, however, a very interesting machine. Its use of the
Motorola 68008 processor chip makes sure of that. The 68008 is the
baby of a family of microprocessors based around a similar instruction
set. The largest member of the family, the 68020, is a true 32 bit
MICroprocessor.

This book sets out to reveal the power of the 68000 instruction set,
discussing each instruction in turn, and gives that power to you by
including listings for both a 68000 assembler and a disassembler.

As each instruction is introduced | will describe, line by line, how the
disassembler deals with it. In the process | will introduce relevant
features of QL SuperBASIC and QDOS. Chapter 11 presents information
about using machine code programs with QDOS.

This book would have been impossible without a number of other
people, and | would like to thank the following for their help:

The two lans for their invaluable help in exploring the outer reaches of
the 68000 instruction set.

Sinclair Research Limited for lending me a QL. (VER$="AH", on
which the programs in the book have been tested.)

And finally, Alfred Milgrom and Melbourne House, without whom this
book would not have been produced.

Contents

PREFACE

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5
CHAPTER 6
CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

APPENDIX A

APPENDIX B

680@0 Machine Code, An Introduction

SuperBASIC Initialisation and Control Routines

for a Disassembler .
MOVE and the 680@@ Addressing Modes 23
Some _BBma_m:m Data Commands, Bit Tests 13
and Peripheral Data Transfers

Sundry Unary Operations 41
Interrupts, TRAPs, Subroutines and Jumps 55
‘Quick’ Arithmetic and Conditional Operations 67
ADDition and SUBtraction Vs
.m::a;.\ _noQom._ m.:a .>153m:o. Onmﬁm:o:m. 20
including Multiplication and Division

Shifts and Rotates 87
Practical Use of the Assembler 93
Alphabetical List and Index to

Assembler Mnemonics 101
Early QL ROM Version Names 107

APPENDIX C
APPENDIXD
APPENDIXE

Index of Function and Procedure Names
Listing of the Assembler

Listing of the Disassembler

Write to Us

Customer Registration Card

109
111
155
181
183

Chapter 1
68000 Machine Code,
An Introduction

QL SuperBASIC is, to use a hackneyed phrase, like a breath of fresh air
for those of us who are used to the old fashioned BASICs like, dare | say
it, Spectrum BASIC. | find that SuperBASIC's PROCedures, FuNctions,
LOCal variables, SELect statement and so on, vastly reduce the amount
oftrivial detail that you have to hold in your head while writing a program.
You no longer need to remember line numbers, names of variables to set
up before GO SUBs, and so forth. This enables the writing of programs
in a shorter time which are larger, more powerful and less bug ridden
than equivalent Spectrum BASIC programs.

But, as always, to meet the challenge of writing the fastest, most
powerful, most memory efficient program on the QL, you need to write
programs in machine code. So, | set out to teach myself machine code
for the 68008, the processor at the heart of the QL, and to write an
assembler to enable the development of machine code programs. On
the way to achieving this aim, | wrote a disassembler which, by letting
you look at the workings of the QL's QDOS and SuperBASIC ROM set,
can help in the understanding of both 68000 machine code and the QL.

Both the assembler and disassembler are written in SuperBASIC and
are presented in full in this book so that you can type them in yourself.
Typing the programs into the computer is one of the best ways of forcing
yourself to digest the full details of each instruction.

We will look first at the disassembler, for two reasons. Firstly, it allows
the instruction set to be examined in related groups of similar types of
instruction, rather than imposing a random ordering such as the
alphabetical order of the assembly language mnemonics. Secondly,
the disassembler is a shorter program than the assembler, so you will
have a working program for your QL sooner than if we started with the
assembler. When you have finished typing in the disassembler you
should be ready for the challenge of typing in the assembler.

Before diving into the listings, | will set the scene by describing some
of the architecture of the 68000 family of processors.

As often remarked, the 68008 is the baby 8 bit bus processor in a
family of very similar processors produced by Motorola. The various
members of the family are listed in table 1.1. An advantage of such a
family is that Sinclair could redesign the QL hardware to use one of the
larger, faster, more expensive, members of the family to produce a new
version of the QL, which would be able to run the same software as the
old version, even down to the fine detail in the QL ROM. All the family
members have the same instruction set, except that the 68010 and
68020 have some extra instructions to help use hardware memory
management and protection devices, and the 68020 has some extra
addressing modes, including the use of 32 bit relative displacements.

| um ot vt ey
68008 8BITS e BYTES 16 BITS
68000 16BITS 224BYTES 16 BITS
68010 16 BITS 224BYTES 32BITS
68020 32BITS 2%2BYTES 32BITS

TABLE 1.1 THE 68000 FAMILY

The 68000's processing activities are based around the set of 17
registers shown in table 1.2. Each register contains 32 bits. Eight of the
registers are called data registers and are named DO to D7. The
remaining nine registers are address registers named AQ to A7, there
being two registers called A7, only one of which is accessible at atime.
Which version of A7 is available for use depends on the setting of the
supervisor status bit which we shall meet shortly. This is somewhat like
the alternate register set in the Z80. Although any address register may
be used as a stack pointer, certain instructions such as subroutine calls
use A7 implicitly as a stack pointer, so assemblers often allow A7 to be
called SP. The version of A7 accessible in supervisor mode is called the

supervisor stack pointer or SSP, and that available in user mode the user
stack pointer or USP.

BITNUMBERS
3130292827 26252423222129 19 1817 1615 1413121 109 87 6543 21 0

Dol 7 ! !

T
1
T
|
T

<1
T

T
1
T
1
T
I
T
1
T
I
T
L
T
1
T
"

FAdbFA FA AR ELdEDE A
IS4 58] [L0 10) O] S

T
Il
T
L
T
L
T
)
T
L
-
I
T
L
T
L

FAFA FAFAFAFAERA RS

FAFAFAFAFAFAFAFA
FAFAFAFHAFAFAEREA R A

T
1
T
1
T
1
T
1
T
L
T
1
T
1
T
1

sl et Bl Ok S N
T) s R TR i SR R R S T

Tt
(T
T

TS
T
fleel
T

T
Ul
1oLt
Tt
U
Wil
()
Tl
L

S))) St [l SO (N SR () SO i S) S
td e d B Ed kA kA S

T
1
T
L
T
1
T
1
T
|
T
1
T
1
T
1

FAFAFARFAEFAFARFA RS
FAF4A 4 FAF4FdFAEA

T
1 |
T T
L I
T T
L
T T
1 L
T T
| 1
T T
1
T T
1 L
i
L 1

FAFAFdAFAFA 4R
FAEREA A R EFEA 4 B4

T
L
T
L
T
1
T
1

— L

BYTE

.————————.—_‘—— -~
]

LA EdRH B4 bd B4
SR R (i T [S g S S S o SR
(G 1 S) el) I () o S CONI S
F4Ed AR 4R FE4 F A
FAF4FAF4AF4AFA FA
FAFAFAFAFAFA A
—t —t —t —+ ——

T T Jusp
i lssp

>
~

b 0=

[1]

WORD

LONGWORD

TABLE 1.2 DATA AND ADDRESS REGISTERS

One of the beauties of the 68000 instruction set is its ability to handle
byte (8 bit), word (16 bit), and longword (32 bit) data items in a similar
fashion. There are often three versions of the same instruction, with
extensions “.B"”, “.W" and “.L" for the three lengths. Many instructions
treat numbers as signed numbers using twos complement notation. In
this notation, for instance, minus 1 is stored as the number 28-1 in a byte,
2161 in aword, or 2°2-1 in a longword. All negative numbers have their
most significant bit set, and this bit is known as the sign bit.

Where an instruction can operate on either data registers or address
registers, the length specification has different effects. A byte or word

3

operation on a data register only affects the least significant byte or
word, the remaining 24 or 16 bits of the register are left untouched.
Address registers cannot be manipulated in byte lengths: only word or
longword size instructions are allowed. If a word operation takes place
on an address register, the source data item is first sign extended to 32
bits of the address register. Instructions which produce a result in an
version of the number, before the operation is carried out on the full 32
bits of the address register. Instructions which produce a result on an
address register do not set the condition code flags, even when the
equivalent operation on a data register or an operand in memory would
set the condition codes. This is to allow addresses to be changed
between the setting and use of a condition code flag.

In addition to the data and address registers there are two other
registers, the program counter (PC) and the status register (SR) as
shown in table 1.3

The status register is nominally a word long and conveniently splits
into two bytes, each of which actually has only five active bits.

The most significant byte of the status register is known as the
supervisor or system byte. The other byte is known as the user byte, and
may also be manipulated as an independent register, when it is known
as the condition codes register (CCR).

The key bitin the supervisor byte is the Supervisor status bit (S). If this
bit is set, the processor is in supervisor mode and is allowed to alter the
whole of the status register and can perform a number of privileged
instructions. If the S bit is clear, the processor is in user mode and the
privileged instructions are not allowed. In the QL it can be loosely said
that QDOS runs in supervisor mode and the SuperBASIC interpreter
and other user programs run in the user mode. Pins on the 68008 chip
would allow the QL hardware to check which mode the processor is in,
and prevent access to certain devices or memory as the designer felt
appropriate, but the QL does not use this feature. As mentioned above,
there are two versions of the A7 register, one active in supervisor mode,

31 20 19 16; 15 10
PC (0000000000 0 0]X XX XX XXXXXXXXXXXXXX[0]

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

sr|T|lo]s]e 0|1 1 1]o o o|x|[N[z]Vv]C]

SYSTEMBYTE CCR
USERBYTE

TABLE 1.3 SPECIAL PURPOSE REGISTERS

4

the other in user mode. Space on the supervisor stack in the QL is
limited, and to reduce the chance of running out of stack space,
programs should normally be run in user mode. The T bit in the status
register is the Trace status bit. If set, an interrupt-like trap occurs after
every instruction, allowing the execution of a program being tested to be
traced instruction by instruction.

The | bits are an external Interrupt mask. When a hardware device
wants to interrupt the processor it presents an interrupt level number
from 1 to 7 to the processor. Only level numbers which are higher than
the value of the current interrupt mask will cause the 68008 to call an
interrupt processing routine. Level 7 is special in that it always causes
an interrupt, and can thus be treated as the equivalent of a non-
maskable interrupt available on other processors. When an interrupt is
accepted by the processor, the | bits are changed to the interrupting
level number so as to prevent lower priority devices from diverting the
processing of the interrupt. On the QL, all normal devices cause level 2
interrupts when they require processor action, and only level 7
interrupts are recognised by QDOS in a manner which would allow you
to write your own interrupt handling routines (see Chapter 6 for details).

The condition code flags are the normal arithmetic result codes,
which are similar to those you find in the Z80 processor used in the
Spectrum. C is a Carry (or in the case of subtraction, a borrow) from the
most significant bit of an arithmetic result, indicating an unsigned
arithmetic overflow. It also has special meaning in the shift and rotate
operations of Chapter 10. The V bit is the signed arithmetic oVerflow
flag, indicating that a result had the opposite sign to that which might be
expected from a simple examination of sign bits. Z indicates a Zero
result. N is a copy of the sign bit of the result which will be set if the result
was Negative. X is the eXtended arithmetic bit, and during addition,
subtraction and many of the shifts and rotates, is a simple copy of the C
bit. However, X is not affected by as many instructions as C, and this
allows useful instructions to be fitted in between the calculation which
produces X and the operation which uses it.

The only register left to be discussed is the program counter (PC).
The register is nominally 32 bits long, but as there are only 20 address
pins on the 68008 chip, the most significant 12 bits of PC are irrelevant.
Further, as all 68000 instructions are an even number of bytes long,
Motorola have chosen to insist that all instructions start on an even byte
boundary. Thus, the least significant bit of PC is always zero and only 19
bits of PC are active. Naturally, PC is incremented during the course of
an instruction so that, after an instruction has been executed, PC points

5

to the next instruction, unless the instruction was one which alters the
flow of the program, in which case the instruction alters PC to point to the
next instruction to be executed.

Chapter 2
SuperBASIC Initialisation and
Control Routines for a
Disassembiler

SuperBASIC has made it relatively easy to write both the assembler and
disassembler in what is known as a top-down, structured manner.

In the top-down approach to programming you start writing a
program to do the whole job, disassembly or assembly in our case, but
you do the job by calling procedures or functions to do any self-
contained or repetitive task. These procedures or functions are again
broken down in a similar manner until the task is simple enough to be
achieved directly in SuperBASIC. It is quite comforting to write
SuperBASIC programs in this manner, as you are able to put off until
later some complex task by naming it as a procedure. When you actually
come to programming the task you will be able to concentrate
exclusively on it, rather than worrying about the rest of the program.

The top-down, structured approach has the disadvantage that it is
difficult to decide in advance exactly where to draw the dividing line
which allocates some task to a procedure or function. Thus, there can
be a tendency to duplicate sections of code which would have been
more effectively separated off as a procedure. The specification for
such a procedure is often only realised as you type in the same sort of
code for the third or fourth time. An alternative approach to
programming, called bottom-up, structured programming, tries to
identify all these simple routines in the first instance and link these
routines together to form the required program. Such an approach
tends to need a lot of intuition in identifying the procedures to be written
and how they should be called.

In practice, | try to get around some of the problems by writing
programs in a different order to that in which they are presented,
attacking the heart of the problem first, and then building around that in
a technique | call middle-out, semi-structured programming.

An approach such as top-down, structured programming is a
technique designed to make programmers think clearly about what it is
they want the program to do. What really matters is the behaviour of the

7

A structured program block may be
a PROCedure, FuNction, or
perhaps just a single statement.
Indeed it can be any programunit
with a single entry and a single exit.
The actual contents of the block do
not matter; all that mattersis the
functionit performs.

One way of proving that a block performs the task it was
designed to performis to insist that blocks combine in a
restricted number of ways to form more complex blocks.
Forexample:

Sequential composition of two
blocks.

[SNNE
Alternation using IF with THEN A general REPeat loop with a
block and ELSE block. central conditional EXIT.

Any program can be constructed from simple blocks using a
combination of these three techniques. For example the
statement:

SELect ON i
=0

block @
=1

block 1

= REMAINDER
block 2

END SELect

could be visualised astwonested IF ... THEN. .. ELSE
combinations.

no

:

block 2 block 1 block @

program produced and, based on that behaviour, the confidence that
the user has in the correctness of the program'’s results; plus, of course,
if that confidence is not justified, the ease with which a bug can be
corrected. There were a number of bugs in the disassembler and
assembler when | first wrote them: | tracked down quite a few by
combining much of the two programs together into a program which
disassembled some code, then assembled the text produced and
checked that the code produced was the same as the code
disassembled. This revealed a number of errors and oversights, whose
causes were relatively easy to identify with the help of the program
structure. The differences which remain between disassembly and
assembly of the QL ROM are now all explainable.

Inthe disassembler | have gone furthest down the road to structuring,
by making all the variables LOCal and explicitly mentioning the names
of all variables passed in procedure calls. The assembler needs much
more information to be common to many procedures, and consequently
| have taken the opposite approach, and most procedures are called
without any explicit parameters.

Both the assembler and disassembler have the assembly language
mnemonics and instruction code bit patterns embedded in the BASIC,
because the 68000 instruction set is not repetitive enough for the more
conventional instruction table approach to work. The only feature
common to many instructions is a choice of addressing modes as
exemplified by the function adr$ in the disassembler or the procedure
identify in the assembier. But, the rules about which addressing modes
are available with which instructions are quite complex and are left to
routines which call adr$ or identify.

Now to the BASIC. Start by typing:

AUTD
pressing <ENTER> at the end of this and every other line. The AUTO
command causes the QL to work out the next line number as we go
along, saving you some typing. So, as we want the first line to read:

188 WINDOW 44B,208,32,14
you only have to type:

WINDOW 248,708,32,14

This program line is not necessary if you always select option <F2>
for TV. mode when powering up your QL. Itis there in case you selected
<F1> for monitor mode, which produces a window too small for the line
length of listing we would like to use. This particular WINDOW is worth
remembering, as it resets the window size and position to the normal TV
mode size, without you having to press the reset button.

The next line is also not absolutely necessary and, indeed, during
program development you may wish to leave it out, as it closes the listing
window (#2). | do this to reduce the multi-coloured screen flashing
normally associated with the loading and starting of a program.
Unfortunately, it is not enough simply to CLOSE#2, as subsequent
RUNs of the program would generate a channel not open error. To
prevent this, we make the line read:

{18 OPEN#Z;scr_:CLOSERZ

This opens channel 2 to the default screen, which does not generate
an error even if channel 2 is already open, and then immediately closes
it. Note the change in terminology from the Spectrum. The # numbers
are called channel numbers rather than stream numbers.

128 MODE 4

We need to use the high resolution mode to display the line length
needed by the disassembler. This command also has the effect of
clearing the screen.

{38 CSIZE 3,1

10

We will print the title in the largest size.

14@ PRINT "58@808,Dicasseabler”

138 CS1IE 2,0

168 FPRINT "&21964,Alan,Biles®

i78 C51IE 2,8
where 1 is used to indicate a space. If you find that the small character
size is too small to read, the line length is such that:

178 C5IIE 3,8
will spread the disassembler output neatly over two lines.

188 KEPeat display
Figure 2.1 is a screen dump of the result.

Now we enter the actual working part of the program, a loop which
displays a section of memory each time it is repeated:

198 PRINT “Code,or,Data?,{C,or,D}";

We repeat the next few lines until such time as a correct reply is input.

788 REFeal inmode

218 a$=INKEYS$(-1}

The minus 1 parameter to INKEY$ makes it wait until a key is pressed,
unlike the immediate return of the Spectrum INKEY$.

228 IF a$=="c" OR a$=="d" THEN EXIT inmode

Note the use of = = to do a case independent string comparison, so
that it does not matter whether <CAPS LOCK> is operating or not when
the key is pressed.

3@ END REFeat inmode

68888 Disassembler

8 1984 Alan Giles
Code or Data? (C or D)

FIGURE 2.1
11

If an incorrect key was pressed, this causes the computer to loop
round and wait for another letter to be typed.

240 PRINT 'a$

We print out the letter keyed, as a reminder to the user.

238 REFeat instart

Now, we repeat a loop until the program is given a sensible starting
adddress.

250 INFUT "Start,address?;(Use, '$ to,indicate, hexadecimali®ihd

The program accepts addresses in either decimal or hexadecimal
notation; the standard Motorola notation is used, where hexadecimal
numbers are prefixed by a dollar sign.

Conversion from a hexadecimal number string to a QL floating point
number seems like a useful thing to do in a function, so we write:

278 start=nusber (h§)

Doing this also has the advantage of putting off working out how to do
the conversion until we have had time to think about it; but we do need to
decide how number will indicate any problems it finds in decoding b$.
All addresses are positive, so we decide to return a negative number if
there is an error.

280 1F start®=@ THEN EXIT instart

290 EMD REPeat instart

If there was an error, we try again.

388 REFeat infin

Now we do the same again for a finishing address.

318 IHPUT *Fipish,address?, {lse,ENTER toscarry on,for,ever)®icd

Quite often you will not know how far you have to disassemble, so we
allow the choice of never ending disassembly.

328 IF c$="" THEN c$="{@48575"

This sets up an appropriate finishing address, the last location that
the 68008 can address with its 20 bit address bus. We could write the
same line in hexadecimal as:

320 IF c#="" THEN c¥="$FFFFF*

I8 finish=number {c$)

348 IF tinish:=B THEN EXIT infin

Again, number can indicate problems by returning a negative value.

J58 END REFeat infin

In which case, we go round the loop again.

160 IF a$=="c" THEN

12

We now know enough to start disassembling, but this is just the sort of
task which needs fitting into a procedure.

378 disasseable start,finish

Writing that line is a relief. We have put all the hard work in a package
we can concentrate on later. Meanwhile we can get on with the much
simpler case where you just want to see the memory contents as data,
naturally in both numeric and character forms. To make life more
complicated, we decide to place the character forms midway between
the positions of the two hexadecimal digits of the numeric form using the
QL CURSOR command. To do this we need to know which line the
cursor is on. Figure 2.2 shows the sort of thing we are aiming for.

380 ELSE

19¢ SCROLL -10

So, we make sure that the bottom line of the window is clear. Note that
positive scrolls move the screen contents in a positive direction in QL
pixel co-ordinates, that is, down the screen. For the more conventional
interpretation of the word SCROLL, we need to use negative
parameters.

438 CURSOR 8,198

Then we can safely place the cursor at the beginning of the last line.

418 FOR i=start TO finish BTEP 3Z

There is room on aline for 32 bytes of data, but you might find the data
easier toread if the character size is larger or there are fewer characters;

Code or Data? (C or D) d

Stort oddress? (Use '$' to indicate hexadecimal) $6800

Finish address? (Use ENTER to carry on for ever) $68FF

068090 B88094504860C42D48091C2D4A0D024514566847AB968944CDFBDEC4E7S5B04F078C
cEPHEF-HEF-JESOQEFFzEL£ LERFENUROEG

96820 B55852494E540DF 28352554EQES520453544F 5000907 74054 94E5855540F 7RO657
FPRINTEFERUNERESTOPEEtEINPUTEZRV

06340 494E444F57009F 96964 24F 5244455200067 C03494E4BB67AB553545249500676
INDOWEFOSEBORDEREE! FINKEzZESTRIPRuV

86860 05504 15045520F SEAS5424C4F434BA68803504 1 4E8686065343524F4C4CA0F 836
JPAPERY"¥BLOCKEcCEPANFoFJSCROLLEESG

096880 854353495A45FD2405464C415348FD1685554E444552F D2AB44F 56455200F 83R
JCSIZEFSEFLASHEEFFUNDEREXFOVEREE::

B68A0 B6435552534F5200F 83E024 1 5400F D4685534 341 4C4SFDS0B5504F 494E54F DSA
JCURSORF¥E>JATEFFESCALEEPEPOINTEZ

P68CA N44C494E4500F DHAB454C4C49505345F D6PA6434952434C4500FDA6B3415243
JLINEFE) BELLIPSEFL£FCIRCLEFEHOEARC

BA8EA FD2AB7504F 494E545F520DE6R45455524E0BBDD6865455524E544F 09REOEASSH
FXEPOINT _REFETURNEEFFEITURNTOEEEEP

Code or Data? (C or D

FIGURE 2.2

13

or, to help in reading longword tables, you might prefer to print the data
in longwords of 4 bytes. | leave this decision to you.

470 PRINT hex5$(i:';

We define a function to print the five hexadecimal digits of an
address, and use it. Note that the semi-colon is needed to force the
exclamation mark to cause a space to be printed between the address
and the data which will follow.

At this point it is worth mentioning the possibility of disassembly
output to a printer. It is probably best to synchronise output on both
screen and printer, so that you can see any characters which might be
left in the printer buffer. To use a printer in this way you need to open a
channel to it, set up the baud rate and possibly send some opening
control characters which will depend on the type of printer involved.
Perhaps something like:

99 OPEN#4;serie:PRINTH4;CHRE(12);

Then every time data is printed to the screen it also needs to be sent
to the printer, so you might add:

425 PRINTH#4;hexS80i1),

To return to the general program, we now need to print the data in
hexadecimal:

430 FOR j=i 70 1431

If you are printing less then 32 bytes per line you will need to alter the
figure 31 in this line:

442 FRINT hexcon$(il;

hexcon$ is a function which returns the hexadecimal representation
of the contents of a given address. Again, if you are using a printer, this
data also needs sending to the printer.

458 END FOR j

468 SCROLL -18

470 CURSCR 39,198

This places the cursor under the middle of the first digit of data.

If you have a printer, you may be able to control the print head this
precisely, but more likely you will have to place the cursor at the
beginning of the first digit of data by:

475 PRINTRA;" Jassas™;
where once again a1 is used to indicate a space (so that you can count
that there should be six spaces between the quotation marks).

488 FOR j=1 TO 143t

14

On the screen, all characters except <ENTER> (CHR$(10)) have a
symbolic representation. If you have a printer you may have problems
with more characters, and want to exclude them. Here is a method for
excluding CHR$(10) from the screen print.

49¢ 1F PEEK{j}<:18 THEN

588 PRINT CHR$(PEEK{j1)!;

518 ELSE

528 PRINT *\3";

530 END IF

The backslash symbol “ \ " is used for CHR$(10) as a reminder that
it causes a new line of printing; the semicolon is added to differentiate it
from normal backslashes.

4R END FOR

530 PRINT

This ends a block of 32 bytes of data output, and at this point it is
worth discussing ways of pausing or stopping screen output so that you
have time to examine the output. The QL manual frequently mentions
<BREAK> which is keyed by holding down <CTRL> and pressing the
<SPACE> bar, and as things stand you may use this to stop the output
at any point, then using the command RUN will allow you to start the
program again. There is another useful <CTRL> key pairing which |
cannot find mentioned in my copy of the QL manuals; but if you hold
down <CTRL> and press <F5> you pause the screen output; to
resume output you press any key. Which key you do press does matter
slightly, as it will end up in the keyboard input buffer, and a subsequent
<BREAK> will cause it to appear in the channel 0 input line. To
supplement these methods we can include our own pause or stop test.

S4B 1F INKEY$=="s5" THEN NEXT display
is a suitable way of stopping the output and returning to the “Code or
Data" question, you just have to press the <S> key, as INKEY$ with no
parameter returns its findings immediately.

57@ EMD FOR 3

The FOR loop terminates when all the requested data has been
printed.

588 END IF

This matches the IF statement in line 360.

S9¢ END REFeat display

This ends the loop set up in line 180. There is no way out of this loop,
no EXIT or GO TO which would cause the program to look for further

15

lines of code. So we have finished writing the disassembler — apart, that
is, from one or two procedures and functions we have used.

688 DEFine FuNction number (a$)

When we used number, we said that it coped with both decimal and
hexadecimal strings, a$, and returned their value, or a negative number
if there was a problem.

510 LOCal 1,34k

We need a few counters, so we make them LOCal so that they do not
affect other, similarly named, variables outside the function number.

420 IF a$="" THEN RETurn -{

The null string is the simplest case.

630 IF a${1}>="@" &ND a$(1)<{="9" THEW RETurn a

Decimal numbers can be handled very easily, we use the QL's
coercion to convert the string a$ to the floating point value RETurned by
number.

H4B IF a${1}{>"$" THEN RETurn -|

If the string does not claim to be a hexadecimal number then we have
our next problem case.

430 =@

We will use i to contain the value we calculate.

660 FOR =2 70 LEN(a$)

476 k=CODE(a$ii})

638 IF k»=CODE("a") THEN k=k-37

We want to scan the number and use SELect to deal with the various
possible cases, but SELect does not work on strings, so we have to
convert each character to a number and do our own test to ignore the
difference between capital and lower case letters.

59@ SELect O k

738 =CODEC"B") TO CODEC*9"):i=i#1b6+k-CODEL ")

| always use the short =number form of SELect choices rather than
ON k=number because the ON kis ignored and you could be led astray
by using SELect ON k and then ON j= into thinking that somehow |
would now be tested, when in fact SuperBASIC continues to test k.

718 =CODE("A®) TO CODE("F")ii=1%16+k+16-CODE{*A")

The above is the official, most easily understood, version of the
calculation, emphasising that “A” represents the value 10. If you accept
that the ASCII value of “A” is 65 then the calculation is very slightly
quicker if you type:

718 =CODE{"A") TO CODE{"F"):i=i#14+k-35

722 =REMRIMDER :RETurn -t

16

If any of the characters in the string is not a valid hexadecimal digit
then there is no point in continuing, so we return with an error indication.

738 END SElect

748 END FOR

758 REfurn i

When the FOR loop terminates we can return the value of number,
which has now been calculated.

752 EHD DEFine

SuperBASIC has an option which would allow us to write

758 EWD DEFine number
but, as we cannot make one definition inside another, there is no
confusion without the word number. We can, and later in the program
do, nest SELect and IF to a potentially confusing level and we might like
to add similar comments to END SELect and END IF, but these are not
allowed by SuperBASIC.

778 DEFine Fulction hexS$ial

798 L0Cal i,af

As usual, we need some LOCal variables.

738 as=""

We start with nothing in a string, and add each hexadecimal digit in
turn.

BR2 FOR i=4 70 8 STEF -1

BIB af=afihexd (INTla/16"11-16%INT{a/ 6% (i4110}

Unfortunately, we cannot use the integer operators MOD and DIV to
select the hexadecimal digit we want as MOD and DIV only deal with 16
bit numbers and the address a may be a 20 bit number.

878 END FOR i

838 RETurn a$

B4@ END DEFine

858 DEFine Fulction hexcont{al

This is a related hexadecimal function, returning, as you may
remember, a hexadecimal string representing the contents of address
a.

B68 RETurn hex$ (PEEK(a)DIV 14)%hex$ (PEEK(a)HOD 14)

E78 END DEFine

This time we can use DIV and MOD, making life much simpler.

Finally, in this group of hexadecimal conversion functions we need:

828 DEFine FuNction hexdial

898 IF a<i@ THEW RETurn a

74

Note the use of coercion again to deal with the hexadecimal digits 0
to 9.

988 RETurn CHR¥(S3+a)

The magic number 55 reappears to deal with “A" to “F".

Note that hex$ does no error checking, and if supplied with a number
outside the range @ to 15 will generate erroneous results.

9i@ EHD DEFine

Now, at last, we can get down to the disassembler itself. Figure 2.3 is
an example of the format we are aiming for.

928 DEFine PROCedure disassembleistart,finishl

738 LOCai i,pc,a$

As mentioned earlier, all 68000 machine code instructions are a
multiple of 16 bits long and so start at any even byte address. Indeed,
the 68008 will generate a TRAP known as an address error if you try to
execute an instruction starting at an odd address.

948 1F start/2{»INT{start/2) THEN start=start-|

Again, we cannot use MOD because start may be longer than 16 bits.

958 REFeat ieaop

Everything the program does from this point on is repeated until the
required section of code has been disassembled. This point does mark
the start or end of a line of disassembly, so we add our test for pressing
the <S> key.

340 IF INKEY$=="c" THEN RETurn

978 IF startifinich THEN PRINT FILL$(®,",29);"END":RETurn

Code or Data? (C or D) c
Stort address? (Use '$' to indicate hexadecimal) $1B1A
Finish address? (Use ENTER to carry on for ever) $1B3E
81B1A 4E7S RTS
01BIC 202809022 MOVE.L $08022(Re) ,00
81B28 6B1A BMI.S $1R(PC)=$81B3C
91B22 4R40 TST.W D@
081824 6Bi6 BMI.S $16(PC)=%81B3C
01826 DOABOB26 ADD.L 90826 (A8) ,DB
01B2A BBESOBIE CHP.W $OB1E(RG) ,DO
81B2E 620C BHI.S $0C(PC)=%81B3C
018308 4840 SUAP D8
01B32 BB68BBIC CMP.W $001C(R8) ,D0
01B36 6204 BHI.S $84 (PC)=%81B3C
91B38 7609 MOVEQ #%60,D0
81B3A 4E7S RTS
91B3C 76FC MOVEQ #$FC,D@
B1B3E 4E75 RTS

END
Code or Data? (C or D)

FIGURE 2.3
18

This is the normal end of loop test, where 4 stands for a blank as
usual, and END is the conventional assembler mnemonic marking the
end of a piece of code. If you are using a printer then, as usual, you will
need to include a command to print the same text on the printer.

288 PRINT hexS#(start)!;

Each output line starts with the address of the item being
disassembled.

998 pc=start

pc is our version of the program counter, it keeps track of how far
disassembly has progressed, generally pointing to the next word to be
disassembled.

1008 fault=g

We use the flag fault to indicate any problems with disassembly, so
we start by setting it to indicate no problems.

{218 a$=dis$ipc)

Again, we put a large portion of the work yet to be done into a
function. dis$ is intended to return a text representation of the
disassembled next instruction, and advance pc to point to the following
instruction; but, it may indicate a fault, in which case both the text and pc
may not be left in sensible places.

1820 IF fault THEN

1830 pr=start+?

If there is a fault then we may have been trying to disassemble some
data, so we want to display it as data but switch back to disassembling
code as quickly as possible, so we only display one word of data.

1040 a$="DC.B, 004"

The usual assembler mnemonic for data is DC which stands for
define constant. The “.B” indicates byte size data, which we will use in
case the data is really a text string. Note that we will display all
mnemonics in an eight character field, hence the four blanks.

1850 IF PEEX{starti»=CODE(",") AND PEEK{start){=CODE{"&"} THEN

1868 a$=a$k® " "LCHR$ (PEEK (start))i®',*

Note the use of the apostrophe to mark a text constant used by the
assembler; this is used in preference to the quotation marks which tend
to be used by BASIC.

1878 ELSE

1880 a$=a$&PEEK (startik",”

Ifthe byte is not a printable character, we display its value in decimal.

1898 ERND IF

19

We now have to do the same for the second byte of the word.

1188 IF PECK{start+!1}»=CODE(",") AND PEEK{start+1){=CODE ("&*) THEN

1118 a$=a$%" "LCHRS (PEEK (start+i)ige'®

1128 ELSE

1138 a$=a$lPEEK (start+l)

1148 END IF

1158 END IF

This ends the IF statement started at line 1020 as, whether there was
a fault or not, we now have a valid disassembly text in a$ and a sensible
value for pc, so we can print the hexadecimal codes which represent the
instruction disassembled. The difference in values between start and pc
allow us to determine how many bytes should be printed.

{158 FOR i=start TD start+1@

1178 IF i>=pc THEN

1188 PRINT ",.%;

1198 ELSE

1288 PRINT hexcon$(i);

1218 END IF

1220 END FOR i

1230 PRINT 'a$

1248 start=pc

We advance the pointer start to the beginning of the next instruction,
and can go round the loop again.

125@ END REFeat loop

1268 END DEFine

To try to disassemble the 68000 machine code as quickly as
possible, we try to divide and conquer, splitting the operation codes into
as many different groups as possible. The 68000 operation codes are
not arranged in any particular order. Indeed, Motorola seem to have
been at some pain to fill any holes in the code set with other instructions.
However, the first hexadecimal digit of an instruction is a good guide to
what an instruction does, and we will divide the problem on that basis.

1278 DEFine FuNction dis$ipc)

1288 LOCal j

1298 j=PEEK{pc) DIV 1a+i

1368 ON j 60 TO 1318,1320,1338,1348,1350,1368,1378, 1360, 1398, 1488, 141

8,1478,1438, 1449, 1458, 1468

Thisis the only GO TO in the program. As GO TO is generally frowned
upon in structured programs, | shall explain why | have used itin place of
SELect.

20

When choosing amongst a number of options, SELect makes a
comparison with each and every number range listed until it finds the
one that matches. The comparison is always with a number range, to
allow for inaccuracy in the last digit of floating point numbers. In other
words, =1 causes SELect to actually check the range between 1-1E-7
and 1+1E-7. This multiple checking process is inherently slower than
ON j GO TO, where the processor picks up the destination line number
straight away. When there are only a few selections, the speed
difference is not too noticeable but, with as many as 16 selections, this
section of the program could represent quite a time investment.

Having taken the decision to use ON j GO TO, we can reduce the
possibility of bugs by using it in a structured manner. We must ensure
that all the destination line numbers are within the same function, and we
use discrete line numbers, rather than lines of the type

1388 60 TO jele+1310
which would not be handled correctly by RENUM.

With this apology we can continue:

1318 RETurn disB¥ipc)

1328 RETurn disl$(pc)

1320 RETurn dis2$(pc)

1348 RETurn dis3$ipc)

1338 RETurn disd$ipc)

1368 RETurn disS${pc)

137@ RETurn disédipc)

1388 RETurn dis74(pc)

1398 RETurn disB$ipc)

1488 RETurn dis9%{pc)

1418 fault=1:RETurn *©

1478 RETurn disB$ (pc)

1438 RETurn disC$ipc)

1448 RETurn disD${pc)

1458 RETurn disE${pc)

1468 fault=1:RETurn **

1478 END DEFine

Operations beginning with the hexadecimal digits “A” or “F" are not
considered as valid by the 68008. Motorola have chosen to reserve
these ranges of codes for use by co-processors such as a floating point
calculator chip or a memory management chip. The idea is that, when
such an instruction is encountered, the co-processor can read the
passing instruction and steal whatever memory accesses it needs to
do its own operation. Alternatively, the trapping of illegal instructions

21

within the 68008 processor would allow the co-processor operations to
be done in software by the main processor. In practice the QL does
not allow such extra instructions to be used, as will be explained in
Chapter 6.

So, following some fairly heavy work in this chapter, we have
managed to split the disassembly task up in to fourteen much simpler
tasks, which we can proceed to write.

22

Chapter 3
MOVE and the
68000 Addressing Modes =

Rather than dealing first with the instructions covered by dis0$, let us
now look at that most general and widely used command MOVE. On the
Z80 processor used in Sinclair's Spectrum, ZX81 and ZX80, the data
movement command is called LD and is written thus:

LD destination,source

On the 68008, the equivalent command is MOVE and it is written like

this:

HOVE source,destination
which is an example of a general rule that when the 68000 series can be
different to the Z80, it is different.

There are many different versions of the MOVE command, some of
which are fitted into odd places in the code table, like LD A,land LD AR
were fitted into the Z80 code table; but the main group of MOVE
commands occupies all the codes covered by the functions we have
called dis1$, dis2$ and dis3$.

1480 DEFine Fulction disi$ipc)

1498 LOCal 1,j,a$

1508 a¥="HOVE.R,,"

All of dis1$, is concerned with moving byte sized items of data. As
you can see in table 3.1, the remaining 12 bits of the instruction word are
split into two groups of six bits which describe the source and
destination data items.

1518 i=PEEK (pci#4 KOD A4+PEEK (pc+i)DIV &4
makes i equal to the six bits describing the destination.

1528 IF i MOD =1 THEN fault=1:RETurp *°

The destination cannot be an address register, as byte operations
are not allowed on address registers, so we reject that. The details of
why i MOD 8=1 means an address register will be covered shortly.

23

MOVE.B source, destination
LB T T T T T T T
DESTINATION DESTINATION SOURCE SOURCE
010 1 | REGISTER ADDRESSING ADDRESSING REGISTER
zcz_mmm . Z_Omm MODE zczmmm_
1 1 1 /i
MOVE.L source, destination
T T | 1l T T T T T
DESTINATION DESTINATION SOURCE SOURCE
010 O | REGISTER ADDRESSING ADDRESSING REGISTER
NUMBER MODE MODE NUMBER
1 1 1 i) - L 1 1
MOVE.W source, destination
T T T T T T T T
DESTINATION DESTINATION SOURCE SOURCE
O |0 |1 |1 |REGISTER ADDRESSING ADDRESSING REGISTER
NUMBER MODE _ MODE . zLZme
1 1 L 1

TABLE 3.1 GENERAL MOVE COMMAND FORMAT

1538 1F { FOD 8=7 AND i:15 THEN fault=1:RETurp "°

Program counter relative addressing is also not allowed for the
destination, as the theory is that the program is written in ROM and
therefore PC relative addresses also refer to ROM. This is the most
annoying addressing mode restriction for us, as we want to write
programs in RAM which will have to use data addresses in the block of
memory we reserve for both program and data and we will only know the
data’s relative address rather than its absolute address.

1548 IF PEEK({pc+11HOD 44=68 THEN

A value of 60 in the source description bits indicates that the item to
be moved is immediate data.

1558 pr=pc+d

As 68000 instructions must occupy an even number of bytes, despite
the fact that we only need one byte of immediate data, two bytes must be
reserved, along with the two bytes of the instruction code.

1568 IF PEEK{pc-2){»B AND PEEK{pc-2)¢>255 THEN fault=1:RETurn **

The extra byte is officially supposed to be zero, but many
assemblers, including Motorola's own, can sign extend the single byte
of immediate data into the spare byte by copying the sign bit into all the
bits of the other byte. We want to reject any instruction the assembler
cannot produce, so that the disassembler shows a better guess as to
what the programmer actually wrote.

24

1578 a$=a$%"#$"Yhexcont (pc-1)
The # is the Motorola convention indicating immediate data and the
$, of course, indicates a hexadecimal number.

1588 ELSE
If we are not dealing with immediate data, the movement can be from
any general item to another.

1398 j=PEEK (pc+11KOD &4

This makes j equal to the six bits describing the source of data.
1688 IF j DIV B=1 THEN fault=1:RETurn **

Address registers are not allowed as byte data sources.

1618 pec=pc+d

This time we only need to skip the two bytes of the instruction.

1628 a$=askadré(j DIV B,j MOD B,pc)

adr$ is our clever function which will hopefully sort out all the possible
addressing modes. The parameters adr$ needs are the 3 bit addressing
mode pattern from the instruction, the 3 bit register number pattern, and
the current pc. The pc is needed in case the addressing mode requires
extension words. If extension words are needed, the source extension
comes before the destination extension, so we have to call adr$ to
decode the source before we call it to decode the destination. Of
course, adr$ must advance pc over any extension words it uses.

1638 END IF

1642 RETurn a¥hk",“kadr${(i MOD 8,1 DIV 8,pc)

1658 END DEFine

So, all that remains is to decode the common destination data item for
both immediate and general forms of the instruction.

MOVE affects the condition code flags, clearing V and C, and setting
Z and N according to the value of the item moved. The X flag is not
affected.

dis2$ and dis3$ are very similar to dis1$, except that address
registers can be MOVEd in longword and word lengths.

1668 DEFine FuNction disZ$({pc)

1678 LOCal i,7,a%

1488 a$="MOVE.L,"

1698 i=PEEK (pc)#*4 WOD A4+PEEK (pc+iiDIV 64

1708 IF i MOD 8=7 AND 1>15 THEN fault=1:RETurn "*

1718 IF PEEK{pc+1)1HOD &4=6B THEW

1728 pr=pctb

{718 a$=a$y"#§"khexcon$(pc-4) khexcond (pc-3)khexcond (po-2ikhexcond{pc-1]

25

Note how the most significant byte of any data comes first, at the
lower numbered addresss. Again, this is opposite to the convention
used on the Z80; also, of course, a 32 bit longword takes up four bytes.

1748 ELSE

1758 j=PEEK{pc+1) MOD 44

1768 po=pc+?

1778 as=atkadr$(j DIV 8,j MOD 8,pc)

178@ END IF

1798 RETurn a#%®,"Yadr$(i MOD B,i DIV B,pc}

16@@ END DEFine

If the destination of MOVE.L is an address register, no flags are
altered.

1818 DEFine FuNction dis3${pc)

182@ L0OCal i,],a$

1830 a$="HDVE.W,,"

The default size is word, so we could have typed:

1878 a$="HOVE,,,."
but it is often useful to remind yourself that MOVE only transfers 16 bits,
so | would recommend the first version.

1848 i=PEEK (pc)#4 MOD 644PEEK(pc+1) DIV 64

1858 IF i MOD 8=7 AND 1315 THEN fault=1:RETurp “®

1868 IF PEEK(pc+1) HOD b4=68 THEN

1878 pc=pc+d

1888 a$=a$l"#4"Lhexcon$(pc-2) hexcons (pc-1)

189@ ELSE

1988 j=PEEK{pc+i) HOD 44

1918 pe=pc+?

1928 a¥=a$badré(j DIV 8, WOD 8,pc)

1932 END IF

1748 RETurn a#%","kadr$(i MOD B,i DIV 8,pc)

1958 END DEFine

We now only need to understand the 68000 addressing modes in
order to have disposed of three sixteenths of the instruction set.

1960 DEFine Fulction adr$im,j,pc)

1970 LOCal k,a$

1988 type=n

1998 reg=j

2880 SElect DN type

Unfortunately, we have a problem. We want to SELect on the
addressing mode m passed to adr$; but SELect only works on floating

26

point variables and, despite appearances, m is usually not a floating
point variable. The use of MOD or DIV in the expressions passed to adr$
by dis1$ etc., actually created an integer result, and the parameters of
functions or procedures retain the characteristics of the external
parameters rather than adopting the characteristics normally
associated with the form of variable name used (% for integers, $ for
strings or nothing for floating point numbers). This would be alright if
SELect coerced the parameter to the correct type but, in the version of
the QL | used, this has been overlooked, and SELect regards such
parameters as having value zero. Consequently, we must first copy m,
and j to proper floating point variables. Using global variables rather
than LOCal variables for these numbers also seems to prevent a
recurrence of the problem in some obscure situations, despite the
transfer to proper floating point variables. It may be that the QL version
you have overcomes this bug, but it is probably best to leave these lines
in, in case you ever use the program on a QL with the bug.

2818 =8:RETurn "D'breg

Addressing mode zero refers to one of the data registers D0 to D7.
Note the use of coercion to form the register name from the floating point
value reg which was, of course, coerced from the integer j passed to the
function.

2828 =1:RETurn "A"kreg

Addressing mode one refers to one of the address registers A0 to A7.
Remember the comments in Chapter 1, that all 32 bits of address
registers are always affected when they are used as destinations, but no
flags are altered. Also, there are two copies of address register A7.

2818 =2:RETurn "{R%%regh®)®

Addressing mode 2 refers to a memory location whose address is
held in one of the address registers. If you are used to Z80 assembly
language, you will recognise the use of brackets to indicate the phrase
‘addressed by the contents of. When a word or longword item is
referenced in this way, the address must be even, or an addressing
error TRAP will occur. The address in the register points to the most
significant byte of the data item, subsequent bytes are taken from
sequential addresses; so, if A6 contains $00030000 and memory at
addresses $30000 to $30003 contains $01, $02, $03 and $04
respectively, then MOVE.L (A6),D1 would put the number $01020304
into the D1 register.

27

ADDRESSING ~ REGISTER 9 =7 e HygE
MODE z%zwmmm EXTENSION WORDS ASSEMBLERFORM 2048 =3:RETurn " (A"kregh")+

— Addressing mode 3 is very similar to mode 2, except that, after the
operation, the address register is incremented by the length of the data

o " item (1 if it is a byte, 2 if a word, 4 if a longword). This mode allows
i = operations to be carried out on sequential items in a table without any
" R need for separate incrementing instructions.

I s MOVEB (An).D

oj1]0 n = (An)—=[NDD DD DD D] — Sl
(An) ,

ey E‘
— Freree XXX X)X XX XXX XX XN DD D D, D)
0|1 |1 n Lt (An)+ g, g f
: (An)—>= 5500000

2 T) T

=t MOVE W (An).Dn

A DDDDDDDD
vLLlD»LL.l\
110l o n . - oo I %

— _ T—T , jissasy R oy e g

=5 Tﬁxxxxxxxx_xxxxxxxzooooooood_ocoooo
i ._r_______.,_,___,__,__ T e ! ik S

(An)—=[NDDDDDDD

dighn) MOVEW (An), An

e due DDDDDDDD
SIGNEXTENSION _ v H

s
=2
4
o)

1110 n t o')
_ _ _ Ms_s 2 _ ds (An. A M) NINN'NINININININ NN N NN NN z_o_o_o o”o,o D oo“o”cuo,co D
Pk e S S L s U o el e
d & o
M . Lol (An)— [NDDDDDDD| —
e DDDDDDDD
Tt 0|00 _ __, e _ die
dig DDDDDDDD

T S PR ! T MOVEL (An).D/An
_ _ _ DDDDDDDD
BERE SSTL_,I__“__Z:_:__; g ot =t
1 1 L 1 L 1 e =t T ¢ L 1 L L
mesmeess| I RSN T
- ==l e T T T T T T T T T T T — T T ; S T T T T i T T T ¥
e . =" due (PC N,D.D.DD.DD,D o_o,o_ob_o_o_lo_cbccw_o_@ D,0,0,0,0,0,0,0
AAAﬁiﬂs_ T S _ 1(PC) AR
4 L 1 1 1 1 1 1 1 1 1 s 1 - OF
iy LABEL

Bt LY . A‘ M g (PC.7AM %)
Pl oo T ool 3 PR T oy i o

J[
M dg INCREASING
Tor ' w_ww_%mmmmmm
111 1lolol|l]ee oo 00’00 T T T T i
EIERER R ER A (I DDODOOE i S TABLE3.3 REGISTER LOADING EXAMPLES
THE EXACT — ey or
INTERPRETATION | | . 4 _aﬁ Pl T #dy
Sullis it Loty FEGEIE] | 2 WL The | £ 2858 =4:RETurn "-{A"kregk™)®
e _Wf[ﬂ‘ S e = #b Mode 4 is similar again, but this time the address register is
L B I B e i decremented before the operation takes place. Modes 3 and 4 together
TABLE3.2 ADDRESSING MODES allow the operation of a stack with any of the address registers acting as

28 29

stack pointers. Conventionally, the stack starts at a high valued address
and works its way down memory, so that:
MOVE.L D6,-1A5)
would push the four bytes of the D6 register on to the A5 stack, and:
HOVE.L (AS)+,D4
would pull the same bytes off again into D4; but both modes are
available in both source and destination positions, so that a stack which
worked its way from low to high memory could be implemented. The
modes could also be used for first in first out buffers (FIFOs), by using
two address registers as pointers, with one register chasing the other
through the buffer.

These incrementing and decrementing modes are not allowed with
all instructions. Wherever there are any mode restrictions, | shall
mention it in the text.

2068 =Sipcepc+ZiRETurn “$"%hexcon$ (pr-2) khescond (pc-11%" (A kregk")’

Mode 5 has a sixteen bit signed displacement c.m. —-32768 to
+32767) as an extension word, which is added to the contents of an
address register to form the operand address. This mode is thus
frequently used to access the items of a data record, with the base
address of the record loaded into an address register.

2878 =4:%=PEEK (pci En-mnm

2088 a$="$"thexcon${pc-1)&" (A"kregh®,”

2258 RETurn mm?:ami::

Mode 6 is a more complicated variation of mode 5. The extension
word is splitinto two bytes, one of which is a signed displacement (—128
to +127), and the other indicates a register whose value is also added
into the address calculation. This type of extension word is used in
another mode too, so we leave the register calculation to the function
index$.

2198 =7:5ELect ON reg

Mode 7 is a miscellaneous mode incorporating a number of sub-
modes which do not use data or address registers. Hence, reg can be
cmma to specify the sub-mode.

1iB =@ipc=pc+Z:RETurn "4 shexcont (pr-2)khescont (pc-1)

.::m mode is absolute short, that is, the address of the data item is
given as a signed 16 bit extension word. As the number is treated as
signed, it is sign extended before use as an address, and thus actually
allows rapid access to the bottom 32k bytes and the top 32k bytes of
memory space, namely $00000 to $07FFF and $F8000 to $FFFFF on the
68008. Note that there are no brackets around this number, despite this

30

mode addressing the contents of the memory location given by the
number, rather than the number being used as immediate data. When a
number is to be used directly as data, 68000 assemblers require it to be
preceded by a # as in the MOVE commands listed earlier. The
difference between the representation of absolute address and
immediate data is so subtle that it is easy to mistake one for the other at
first glance; so be wary of this possible confusion and double check for
the presence of a #.

2128 =l:pc=pc+dsRETurn *$"%hexcon$ipc-4)khescond (pc-3) hexconlpc-2ik

hescond ipc-1)

This mode is absolute long, and uses two extension words to address
all possible memory locations. Note, again, that the most significant
byte of a number always comes first.

2139 =Zipc=po+2iRETurn "$"khexcondipc-Z)khexcondlpc-11&" (PCI=$"Yhex5¢

{pc-2+25A%PEEK (pc-2)-PEEK (pc-2) DIV 12B#43534+PEEK pc-11)

This mode, program counter relative, is one of the most frequently
used modes on the QL, as it allow routines to be located anywhere in
memory without reassembly. The original intention to put all of QDOS
and SuperBASIC into 32k of ROM space was based around this
addressing mode, which would allow any instruction in ROM to
reference any location in ROM. As the QL ROM actually occupies 48k
bytes, there are a few absolute long memory references in the ROM, but
most references are resolved using this program counter relative mode.
The 16 bit signed extension word is used as an offset from the byte at the
beginning of the extension word. We use the slightly non-standard
notation $dddd (PC)=%aaaaa to indicate this mode which helps you
work out what is happening by calculating the actual address
referenced.

As mentioned earlier, the program counter relative addressing mode
cannot be used for the destination of an operation as the 68008 regards
this as an attempt to write to ROM and TRAPs the error.

148 =T:k=PEEK{pc)ipo=peot?
2158 a¥="$"%hexcandipc-LIRF(FC,"
168 RETurn a$kindex$ (k!

This mode is rather like mode 6, allowing an 8 bit signed
displacement and a register to be added to the program counter to form
the required address. Again, PC refers to the byte at the start of the
extension word, and the mode cannot be used for the destination of an
operation.

2178 =REMAINDER :fault=1:RETurn "*

31

Actually, as we saw earlier, type=7 and reg=4, often refers to an
immediate data operand; but it also sometimes refers to the status
register SR. So, the decoding of that mode will be done outside adr$. All
other modes are illegal on the 68008, though some are used for the
extended modes of the 68020.

2189 END SElect

2198 END SELect

2202 END DEFine
completes the function adr$, apart from the full interpretation of the
indexed addressing modes.

2218 DEFine Fulction index$(k)

2228 LOCal a$

238 TF k(128 THEH

248 ag="p"

ELSE
a$="R"
END IF

The register used for indexing can be either a data or address

register, depending on the most significant bit of the extension word.

2788 a$=ad$L(k MDD (2B DIV i&)

The next three bits contain the register number.

2298 IF k& MDD B{:@ THEN fault=1:RETurn ®"

The last three bits must always be zero.

388 IF k HOD 15=0 THEM

2310 RETurn a$t".W)"

2328 END IF

2310 RETurn a$k".L)¢

2348 END DEFine

The remaining bit allows us to cope with the case when there are only
16 bits of valid data in a data register. Indeed, the size word is assumed
if no size extension is given. As usual, word data is sign extended to 32
bits, as is the 8 bit index offset, before they are both added to the
address register or program counter coded into the instruction word.

You might think that such a complicated indexed addressing mode is
a powerful but rarely used mode, a challenge to the mind of a devious
programmer; but the QL uses a number of complex task and channel
tables and, to access them, this mode is very useful. It is also a useful
mode in conjunction with the load effective address command LEA,
when it allows complex addition of data to an address register, as we
shall see later.

(g
=5

e S B S e B N T
L)
n
=

LSO o |
]
=

32

Chapter 4

Some Immediate Data
Commands,
Bit Tests and
Peripheral Data Transfers

Chapter 3 dealt with the 68000 instructions slightly out of numerical
order. We now return to an approximation of numeric order to deal with
those commands which begin with the hexadecimal digit zero.

2358 DEFine Fulction dis@${pc)

2368 LOCal i,a¢

2378 1=PEEK{pc)

Much of this group of instructions is concerned with operations
involving immediate data. We saw how to deal with immediate data in
the last chapter, so we select those commands first.

238@ IF i MOD 2-0 AND i<>B THEW

7399 TF i DIV 4 MOD 2=! THEM IF PEEK(pc+l) MOD 44=68 THEW fault=1:RET

urp **

This line excludes the possibility of adding or subtracting data to or
from the status register, a slightly nonsensical thing to do. Apart from
this exception, the data sizes and parameters are all coded in the same
way, so we will use a function to decode them.

2408 at=imm¥ipci:IF fault THEN RETurn °
The value i determines which command is involved, as follows:

241@ SElect ON i

2478 =G:RETurn "OR"ba${l TO 2)%","ka$(3 TD)

The mnemonic OR is one letter shorter than the other mnemonics in
this range. The first two characters of a$ hold the size extension (“.B”,
“W" or “.L"), so an extra space is introduced to correctly align the
output.

OR itself performs a bitwise OR of the immediate data and the
destination data item. Thus OR allows you to set any required pattern of
bits in the destination item. The instruction clears the V and C condition
codes and sets N and Z according to the result of the operation, while

33

leaving X alone. This range of immediate commands is not allowed to
affect address registers, so there is no matching comment about the
non-setting of flags for address register results.

24838 =2:RETurn “AHD"La$

AND is the opposite of OR in that it allows any pattern of bits in a

destination data item to be cleared, by performing a bitwise AND of the
immediate data and the destination data item. The same range of flags

are set according to the result as are done by OR.

ORé.size # data, destination _ : : :
T
DESTINATION DESTINATION
0|0 00| O O SIZE | ADDRESSING REGISTER
MODE NUMBER
1 1 1 1 1
SIZE: 0| 0 = "B
o 1| =.W .
11 0 =1
AND.size # data, destination
T T T T T
DESTINATION DESTINATION
0|0 0|0 1] 0 SIZE | ADDRESSING REGISTER
MODE NUMBER
] 1 1 1]
SUB.size # data, destination
T T T
' DESTINATION DESTINATION
0|0 0|11 0] 0 SIZE | ADDRESSING REGISTER
MODE NUMBER
1 1 i 1 i
ADD.size # data, destination
T T T T
_ DESTINATION DESTINATION
0|0 0O(1]1 1] 0 SIZE | ADDRESSING REGISTER
MODE NUMBER
1 1 i 1 1
EOR:.size # data, destination
' DESTINATION DESTINATION
0|0 110110 SIZE | ADDRESSING REGISTER
MODE NUMBER
1 1 1 4 1
CMPsize # data, destination
_ DESTINATION | DESTINATION
0|0 11110 0 SIZE | ADDRESSING REGISTER
MODE NUMBER
1 1 1 1 Il
TABLE 4.1 IMMEDIATE DATA COMMANDS
34

2448 =4:RETurn "SUB"ka$

SUB subtracts the immediate data from the destination item. All the
flags C, V, Z, N and X are set according to the result. Subsequent tests
determine whether you consider the items involved to be signed or
unsigned, or possibly the least significant item in an extended, multi-
item, number.

2858 =L:RETurn “ADD"ka¥

ADD is the opposite of SUB, adding the immediate data to the
destination item and setting all flags according to the result.

2452 =1@:RETurn "EDR“ha#

EOR performs a bitwise Exclusive OR of the immediate data with the
destination item, thus inverting all those bits in the destination item with
matching bits set in the immediate data. The X flag is unaffected by this
operation, C and V are cleared, N and Z are set according to the result.

Z478 =12:RETurn "CHP"kat

CMP (CoMPare) is similar to SUB and sets the condition code flags in
the same way, apart from X which is unaffected, but does not load the
result into the destination.

2488 =REMAINDER :fault=1:RETura **
2493 END SELect
2508 END IF

The next group of instructions we shall deal with is designed
specially to help with the transfer of data to and from peripherals.
Motorola have always chosen to locate peripherals at normal memory
locations, thus removing the need for special IN and OUT commands.
Indeed, the normal MOVE command is all that is needed to perform
input and output through peripheral devices. However, the 68000 family
does have a special command MOVEP for dealing with peripherals.
The command is not particularly useful on the 68008; it is designed to
overcome a problem with the 68000 and its 16 bit data bus. Suppose
you attach an 8 bit peripheral chip to a 16 bit data bus. You may wish to
transfer the bytes of a word or a longword to sequential ports on the
peripheral chip, but because of the address numbering scheme these
ports are actually located at alternate addresses in memory space.
Also, depending on whether the peripheral is wired to the high or low
order byte of the bus, the addresses can be even or odd, so that the
usual rules on only accessing even addresses are relaxed. On a 68008,
a designer may wire a peripheral to alternate addresses to maintain

35

MOVEPWA ds (As), Dd
lo]ofofa] o [1]oe]w]ofalr] |s. |
MOVEPWA Ds, dyg (Ad)
[o]oJofo] [s [r]t1[mf[ofJo] 1] [d; |
SO MOVE PL Ds, dy (Ad)

. . S .._ __.-_-__.__-.4_. A T
m_u__uoo_o_o_o_c_o_o,o_oooo_uPo_o_cooooooooococ
DDDDDDDD Alli\\
DDDDDDDD|+-————————
DDDDDDDD|=—
DDDDDDDD|*——
e e] e
MEMORY
ADDRESSES

TABLE 4.2 PERIPHERAL DATA MOVEMENT

software compatability with a 16 bit bus 68000 or 68010 system. On the
QL, no such devices have been wired and MOVEP is, therefore, not very
useful, although it could do some devious things. However we shall still
decode it.

2518 IF PEEK(pc+1) DIV B MOD B=1 THEN
2528 IF i=B THEN fault=1:RETurn **
2538 a$="HOVEP*®

2348 IF PEEK(pc+i} DIV 64 MOD 2= THEN
2558 a$=a$h". W,"

2068 ELSE

570 a=afkt.L,"

2588 END IF

2398 po=pctd

2688 IF PEEK{pc-3) DIV 1Z8=B THEN

36

2618 RETurn a$%"$"thexcon${pc-2}khexcond{pc-11%" (AR(PEEK (pc-T1HOD &)
B3, DPRAPEEK lpc-4) DIV 2)
2528 END IF
2638 RETurn a$&"D"Y(PEEK (pc-41DIV 2)E" $"khexcond (pc-2)khexcond (pc-1}
& (AR {PEEK (pc-3) HOD B)&™)"
2648 END IF
Note that the peripheral is always addressed by a 16 bit offset from
the contents of an address register and the word or longword of data
comes from or is returned to a data register. No flags are affected by this

instruction.
The remaining commands in this section address and test or change

individual bits in memory.

2658 i=PEEK{pc+l) DIV &4

2568 IF PEEK{pc+i] WOD 44=58 THEWN fault=1:RETurn "°

This line rejects program counter relative addresses, as it is not
sensible to want to change bits in ROM. The 68008 will TRAP any such
attempt as an invalid instruction.

2678 SElect DN i

2688 =0:a§="BTST"

BTST simply tests an addressed bit and sets the Z flag according to
its value; other flags are left untouched.

2698 =1:a$="BCHE"

BCHG first tests the addressed bit, then changes its value to the
opposite condition.

2768 =Z;a$="BCLR"

BCLR tests the bit, then clears its value to zero.

2718 =3:a%="BESET®

BSET tests the bit, then sets its value to one.

2770 END SElect

2738 i=PEEK{pc+l} HOUD &4

7743 mnuw*w:»—»»:

The bit to be affected is addressed using the normal addressing
modes discussed in the previous chapter. In addition, the bit is
identified by its number, which is given either as immediate data or the
contents of a data register. If the item addressed is in memory space, it

is of size byte and the bit number ranges from 0 to 7; outside this range,
the actual bit addressed is calculated by taking the given number

37

modulo 8. If the item addressed is a data register, bit numbers are
allowed in the range 0 to 31 and, if outside this range, the number is
taken modulo 32. Address registers are not valid destinations for bit
tests.

2758 IF i DIV B=! THEW fault=1:RETurn *¥

2768 IF PEEK{pci=B THEN

2778 IF PEEK{pc+2}<»® THEN fault=1:RETurn **

Assemblers cannot generate a non-zero first byte for the immediate
data, if that is used as the bit number, so we reject any such faults.

2780 a$=atk"#"LPEEK (pctd)

We use coercion to show the decimal bit number in the mnemonic
form of the command.

2798 pr=pctd

28088 ELSE

2810 a$=a$L"D"R(PEEK (pciDIV 2}

2828 pc=pct?

ZBIR END IF

2848 RETurn a$k",“Yadr$(i DIV 8,1 WOD 8,pc)
285Q END DEFine

Bop # number, destination
DESTINATION | DESTINATION
0|0 |0|0|1|0O0|0O]|O Op |ADDRESSING | REGISTER
_ MODE NUMBER
Bop Ds, destination
b " [DEsTINATION | DESTINATION
010 S 1 Op |ADDRESSING | REGISTER
s { g MODE NUMBER
op: 0|0 = TST
0 (1 = CHG
110 = CLR
1T = SET
TABLE4.3 BIT OPERATIONS

38

As mentioned earlier, the byte of memory or the data register is
identified using the normal addressing modes decoded by adr$.

All that remains to do, is to clear up the details of the immediate data
commands covered at the start of this chapter and, in particular, the
function imm§$.

msummwsmmmZnﬁwo:wgammnnv
78 LOCal 1,],a$

2BBE 1=PEEK(pctl) MOD &4

2898 j=PEEH{pc+l) DIV &4

2988 SElect DN j

2918 =B:a3$=". 5, #$ " Yhexcond ipc+l): Ct

2978 IF PEEK({pc-21<»@ AND PEEK(pc-2 mn THEN

2938 =lia$=" ¥, 84 khexcond po+Z) bhexcond ipct

2948 pr=prtd

2058 =Z:a$=",1,, 8¢ "khexcond (pc+2) khexcond Ipc+3) khexcond (po+d) bhexcon

$ipo+h

2968 pr=pcth

2978 =3:fault=1:RETurn **

2788 END SElect

2998 IF i=4@ THEW RETurn a$h",5R"

It is possible for OR, AND and EOR with immediate data to take the
status register as destination, in which case the earlier comments about
the resultant setting of flags are superseded by the direct effects of the
instruction. Byte sized operations simply affect the condition code
register. Word sized operations may affect all the status register and are
thus privileged, that is, they are only allowed if the supervisor bit is set
before the instruction starts. The instruction may clear the supervisor bit
and, in this case, all the changes associated with changing mode take
place, privileged instructions become restricted and the user stack
pointer becomes the current A7 register.

3808 IF i DIV B=1 DR 1»=58 THEN fault=1:RETurn "°

Immediate operations are not allowed on address registers or
program counter relative addresses, otherwise all addressing modes
are allowed.

3918 RETurn a$&" "kadr¥ii DIV 8,1 KOO 8,pc)

3378 END mnr

pc=p
12

-
3

fault={:RETurn **
)

39

