
Machine code programming is the key to the
real power of the microprocessor, allowing
the programmer direct control over all the
machine's functions. This first part of a
comprehensive course, covering both 6502
and 180 operation codes, will lead to a full
understanding of the fundamentals of
computer programming.

Machine code is a programming language, and it
looks Re this:

INSTK: SBC SD9FA,X ;Outport flag value

or like this:

DE23 FD FA D9

or like this:

11011110 00100011 11111101 11111010 11011001

Sometimes it looks like this:

1240 LET ACC=ACC-FLAG (X)

and sometimes like this:

PERFORM FLAG-ADJUST THROUGH LOOP1

It's all code of a sort, and since it's destined for a
computing machine it's called machine code. To
the machine it doesn't actually look like anything
at all, being simply a pattern of voltage levels or a
current of electricity.

What we usually mean when we say machine
code is Assembly language, and the first example
we gave in this article is an instruction in 6502
Assembly language. The point of giving all the
other examples was to demonstrate that there is no
specific machine language as such, only a number
of different ways of representing a sequence of
electrical events, and representing them in ways
that we find more or less easy to understand. So
the first thing to learn about machine code (or
Assembly language — we won't worry about the
distinction for the moment), is that it's just another
programming language. However, the
programming must always come before the
language: whether you write your programs in
IBM Assembler, Atari BASIC, or Venusian
PsychoBabble, you have to solve the
programming problem in your mind before you
touch a keyboard. The programming language in
which you then express your solution will
obviously influence the form of the final program.
Indeed you may choose among various possible
languages precisely to make the coding of your
program easier, or shorter, or more readable. But
the solution must always come first: content must

16 THE HOME COMPUTER ADVANCED COURSE

- MACHINE CODE /PART

INTRODUCING
FIRSTCONCEPTS

precede form.
In that case, why call it machine code, and why

bother to use it at all? We give the language this
name because its instruction set corresponds
exactly with the set of `primitive' or fundamental
operations that a particular microprocessor can
perform. We use the machine code when it is
important to direct the operation of the
microprocessor exactly, step-by-step, rather than
allowing a program language interpreter to control
it in a more general way.

The commonest reason for wanting to use it is
speed: if your program addresses the processor
more or less directly, then you avoid the relatively
lengthy business of program translation. In other
words, by cutting out the middleman you save
time. Program execution time, that is. The actual
coding, testing, debugging, modification and
maintenance of a machine code program is likely
to take at least twice as long as the same operations
would on a high-level language program. The
unfriendliness and intractability of machine code
stimulated the development of languages such as
COBOL and BASIC.

If the set of machine code instructions is the set
of processor operations, then what are these
operations, and what does the processor do? In
the simplest terms the Central Processing Unit
(CPU) of a computer is a switch that controls the
flow of current in a computer system between and
among the components of that system. Those
components are the memory, the Arithmetic
Logic Unit (ALU), and the Input/Output
devices, When you press a key on the keyboard,
you are inputting some information; in the
machine, however, you are simply generating a
pattern of voltages in the keyboard unit. The CPU
switches that pattern from the keyboard to part of
the memory, then switches a corresponding
pattern from elsewhere in memory to the screen so
that a character pattern appears on the screen. To
you this process may seem like operating a
typewriter, but in a typewriter there is a
mechanical connection between hitting a key and
printing a character, whereas in a computer that
linkage exists only because the CPU switches the
right voltage patterns from place to place.
Sometimes pressing a key doesn't cause a single
character to appear on the screen: the keypress
may destroy an asteroid, or save a program, or
delete a disk file, or print a letter. The operation
depends on how and where the CPU switches the
electric current.

In this simplistic view the CPU is at the heart of
the system, and all information (or electrical
current) must pass through it from one component


