include a calculation that will set the number of repeats required to produce a tone for a set duration, no matter what the frequency of the tones. If we make the unit of duration 1/50th of a second then the number of repeats for a given delay value is: 1000000÷(50×(271+75×delay). To calculate this in machine code would be difficult and slow so instead we can set up a look-up table from BASIC, giving a value from the above formula for each value of delay (i.e. from 1 to 109). The machine code routine then simply has to look up the repeat value and store it in a decrementer, to produce a tone lasting for 1/50th of a second.

Commodore owners with an assembler can type in the source code listing and assemble it to produce an object program that can be saved. The calling program will load back the object program from disk or cassette and set up the look-up tables. Type this in and run it. Type NEW and enter the sample BASIC program that gives the various location addresses used by the machine code program. RUN this program with the buffer box and D/A converter set up as shown on page 732. If you do not have an assembler, then type in and run this BASIC loader before running the calling program. If you use the BASIC loader then lines 45 and 50 of the calling program can be omitted.

BBC owners can simply type in the BBC version as written and RUN.

```
12 REM BASIC LOADER FOR FREGVAMP PROGRAM
 PO :
 TØ FOR I=49801 TO 49911
 40 READ A: FOKEI, A
 50 CC=CC+A
 60 NEXT I
 70 READ CS: IF CCC>CS THENPRINT 
"CHECKSUM ERROR": STOP
100 DATA172,134,194,208,8,169,0,141
110 DATA204,194,76,174,194,169,15,141
120 DATA204,194,162,15,172,134,194,189
130 DATA0,194,24,106,157,15,194,136
140 DATA208,248,202,16,239,120,169,0
150 DATA141,133,194,174,135,194,189,30
160 DATA194,172,136,194,240,7,10,46
170 DATA133,194,136,208,249,141,132
180 DATA194,162,0,189,15,194,172,135
190 DATA194,136,208,253,141,1,221,232
200 DATA224,15,208,239,173,132,194,56
210 DATA233,1,141,132,194,173,133,194
220 DATA233,0,141,133,194,208,218,169
230 DATA0,205,132,194,208,211,88,96
240 DATA16186: REM*CHECKSUM*
 10 REM **** CALLING FROORAM ****
 20 REM ****
                         AND
 30 REM **** TABLE SET UP
 40 :
     DN=8:REM IF CASSETTE DN=1
    IF A=0 THEN A=1:LOAD"FREO.HEX",DN,1
 60 :
 70 REM **** SET UP SHAPE TABLE ****
 80 S=15:TB=12*4096+2*756
 90 FOR I=0 TO S-1
100 Y=127*SIN(X)+127
110 POKE TB+I,Y
120 X=X+2/S
130 NEXT I
150 REM **** SET UP FREQ/DELAY TABLE ****
160 :
170 TB=TB+2*S
180 FOR D=0 TO 101
190 TV=1006/(50*(271+75*D))
200 POKETB+D, TV
```

```
FREQUENCY
AND AMPLITUDE
GENERATION
                                                                               IND. OF STEPS PER WAVE CYCLE
  *= *C200
SHAPTB *=*+STEPS
AMPTAB *=*+STEPS
LOOPTB *=*+102
COUNT *=*+2
DIVISN *=*+1
                                                                                                                       :WAVE SHAPE TABLE
:AMPLITUDE TABLE
:FRED/DELAY TABLE
                                                                                                                         LOOP COUNTER
DIV OF WAVE FACTOR
DELAY FACTOR
                                                                                                                        NOTE DURATION FACTOR
    ++++ SET AMPLITUDE TABLE ++++
                                  LDY DIVISM
BNE CONT
LDA #<SHAPTB
STA NEXVAL+1
JMP INITC
                                                                                                                       : MODIFY PROGRAM
: TO LOAD SHAPTS
                                  LDA #<AMPTAB
STA NEXVAL+1
LDX #STEPS
                                    STA AMPTAB.X
                                    BPL NEXT
    **** SET COUNT VALUE ****
INITE
                                  LDA ##00
STA COUNT+1
LDX DELAY
LDA LOOPTB,X
                                                                                                                      : INIT COUNT HIBYTE
                                   ASL A
ROL COUNT+1
                                  BNE MULT
                                  STA COUNT
  ++++ MAIN PROGRAM LOOP ++++
                                  LDX HEDD
                                  LDA AMPTAB, X
  MORDEL
                                                                                                                       DELAY LOOP
                                    BNE MORDEL
                                    STA PORT
                                    BNE NEXVAL
    ++++ DECREMENT COUNT ++++
                                    LDA COUNT
                                  SEC ##Ø1
STA COUNT
LDA COUNT+1
SEC ##ØØ
STA COUNT+1
                                     BNE MAIN
      1SREM ********************
    2SREM - BBC - SREDUENCY & AMPLITUDE - SOREM - GENERATION - SOREM - GOREN - SOREM - SOR
    90MODE 7
9Sateps=15:port=&FE60
97ddr=&FE62:? ddr=255:REM ALL OUTPUT
00MIMEM=HIMEM-&101:REM RESERVE TABLE SPACE
10%hips_table=HIMEM+1
12xmplitude_table=%shape_table+steps
15FROCset_tables
209D0Tassmpble_code
     20PROCassemble code
40REM **** BASIC TEST PROGRAM ****
```

170PRINT: INPUT"AMPLITUDE FACTOR 0-7"; AF

```
1881F AF<8 OR AF>7 THEN 178
1987div_factor=AF
200FRINT:INPUT"DELAY FACTOR 1-181";DF
2101F DF<1 OR DF>101 THEN 200
2287delay factor=DF
238PRINT:INPUT"DURATION FACTOR 0-15";TF
2401F TF<0 OR TF>15 THEN 230
250?time_factor=TF
 26SREPEAT
270CALL freq
280A=GET#
290UNTIL AF="X"
3000TO 160:REM RESTART
 999;
1000DEF PROCassemble_code
1005DIM MCX &FF
010FOR optX=0 TD 3 STEP 3
1020PX=MCX
10.007.=NLX
1030count=P%:PX=PX+2
1040div_factor=P%:PX=PX+1
1050delay_factor=P%:PX=PX+1
1060time_factor=P%:PX=PX+1
1080\**** SET AMPLITUDE TABLE ****
10901
                         LDY div_factor
BNE cont
LDA #shape_table MOD 256
STA nexval+1
JMP initc
  112
                         LDA # amplitude_table MOD 256
STA nexval+1
LDX #steps
                         LDY div_factor
LDA shape_table.X
1210
                         CLC
ROR A
STA amplitude_table
   290 BFL next
300\
310\***** SET COUNT VALUE ****
                         SEI
LDA #Ø
STA count+1
LDX delay_factor
LDA loop_table,X
LDY time_factor
                          ASL A
ROL count+1
                          STA count
  480\
490\**** MAIN PROGRAM LOOP ****
                         LDA amplitude_table,X
LDY delay_factor
                          BNE mondel
                         STA port
                         CFX #steps
BNE nexval
   650\**** DECREMENT COUNT ****
                          LDA count
                         SEC SEC #1
STA count
LPA count+1
SEC #0
                         SPL WW
STA count+1
BNE main
LDA WW
CMP count
ENE main
    MOODEF PROCest_tables
 0005:#0
0010FOR I=shape_table TO shape_table+steps-
0209=127*$IN(x)+127
0307 [#]
2040:#=x+2*FI/steps
 2008:
@70FOR delay=8 TO 101
2050loop_val=10^6/(30*(271+75*delay))
2090loop_table?delay=loop_v#1
2100NEXT delay
```