
PART 2 qL System Procedures

43

THE QDOS PACKAGE

?The r,,rho1e world is in
a state of chassis. t

Sean 0rCasey

conceptually, QDos i"-!!9 chassis, and you are rhe coach_builder. rr isimportant to view the QDOS system in ttrls.way. There .." -p..f,.p"
manyprogrammers who are accustomed to thrnking or opur.träg sysrems asresource allocation programs, under which-theii own .ipri..lio" programsrun.^Strictly speaking this is not true of QDOS.

QDOS is a chassiÄ of procedures. Applicatioo p.ogrur" which you maywrite are at libertv to use any of thesä proceduräs.- Furthermore QDoshas lhg appropriaie hooks ro enabl;-i;s correction of procedures ro beexpanded or modified as required. rt is this structure '"trict
providesthe assembly language programmer with so much flexibilitv.

3.1 System memory map
The physlcal memory map of the sinclair QL, and the RAM map imposed byQDOS' are so important*to the assembly language programmer that we willlook at these firsr. Figure 3.r shows tt.-luloui oi thu two maps. Map I
li".fii"lnt"tca1

memory map of rhe microcompurer, and map 2 is rhe map of

PHYSICAL MEMORY MAP

The total aoount of memory that can be accessed is I Megabyte. Thesystem ROM, rosether with .h9^?!9I9".
"p"::_IgI-.r,.-pire_i.''RöM, occupythe bottom 64 Kilobytes ($OOO00 to gOFFFF). TÄ;-;";; äa rirouy.""($10000 to gIFFFF) are- dedicateO to Ilö devices. 0n1y 16 Kilobyres ofthis area are currently allocated. Above the first r/o block rles theRAM. The-RAM always has a base address of 920000. il;

-;;p"-;;
the RAMarea will' on a standard 12gK machine, be g3FFFF. witt-iÄ" ö.s Ft"guuyruexpansion RAM module plugged in, the rop of RAM o".or""- inrrrr. Thefinal 256 Kilobvtes of-memory-address'space is reserved for additionalr/0. This finar area, together with the r/0 area thaL exisrs furtherdor'rn rh" -nrlp,- "upiri"ä *t" u"..-"Jiin a roral .i :öa-iir"byres ofexpansion r/0. This may seem rather large but it serves to act noEsimplv as device address space, bur a1sä as device d;i;;;"p.;;ram space.An advantage is clearly evident here because it means that no RAM spaceneeds ro be taken up in the process of aldlng additional I/O facilities.

44

-'*Eq

QDOS RAM MEMORY MAP

Now that r^/e know how the memory space is divided up physically, 1et us
look at how the RAM space is allocated. The bottom 32 Kilobytes ($20000
to $27FFF) are dedj-cated to the screen display. The remaining 96
Kilobytes ($28000 to $3FFFF), or 608 Kilobytes ($28000 to $BFFFF), are
managed by QD0S in the form of five major areas. There are a number of
system variables that are used to determine, at any one point in time,
the sizes and free RAM pointer values of these QDOS areas. The
variables, their use, and their absolute posltion in the memory map are
shoi.rn in Fig.3.2. Each variable is stored as a long-word, i.e., is 32
bj-ts ln length. The mnemonics given to the variables (e.g.' SV-BASIC)
are for reference only - they will not be recognized either by
SupeTBASIC or QDOS.

C

{SV_RAMT)-l

SPR)

:TRNSP)

BASIC)

_FREE)

AP)

Resident
Procedüres

(Extensions to Super-BASIC)

- booted in -

Transient
Programs

(EXECed/QDOS job)

Super-BASIC
data and programs

I

I
"'J:":'i;äT'

t
I
I

Channels and
common Heap items

System

tables and variables

Map.2

(sv_RE

Figure 3.1 Sinclair QL/QDOS memory map

BFFFF

I FFFF

IC(XX)

I BFFF

lll(xx)

I TFFF

0c(xx)
OBFFF

RESIDENT PROCEDURE AREA

At the very top of the available RÄM are the Resident procedures. These
procedures, and any tables that may accompany them, are loaded into
memory when the system is booted (i.e., reset). The only hray to changethe area allocation after it has been set up is to re-booi tir. system.
More will be said of this in chapter 8. The term resident procedure areais used because this is an area that, once booted in, will bepermanently resident. Also the most common use of this area is th.estorage of user-defined superBASrc procedures. By adding the entry point
names of the procedures into the procedure name li.st äf tne supärilsrclnterpreter utility, the procedures thenselves will become extensions tothe SuperBASfC language.
_ Any procedure added to the system in this hray must be re-entrant(i.e., contain no local variables or self-modifying code), and beposition independent. clearly the resident procedure ärea doäs not haveto exist physically, and indeed will not if no external procedures arebooted in.

SV_MSB + $o4
SV_BASE + 908
SV_BÄSE + goc
SV_BÄSE + glo
SV_BASE + gl4
SV_BÄSB + gl8
SV-BASE + $IC
SV_BASE + g2O

Figure 3.2 RÄll syster variabLes

TRANSIENT PROGRAM AREA

The next area is the transient program area (TpA). As with the resident
procedure area, the TPA does not have to exist. should you wish toimplement and execute a transient machine code prog.är, you would
allocate_an appropriate amount of memory using a QDOS

'rTiAp '#it
ca11.

once a TPA had been set up, a program within ine rpl (known to QDos as ajob) can be made active or inactive. The -job can also be suspended, orthe TPA discarded. This process of a1loäating TpA space and'scr,eauungjobs is part of the multi-rasking capability built into QDos. A fu11discussion of such processes will be found i-n chapter 4. fn addition to
being executed as a QDoS job, a transient program can also be executedfrom SupeTBASIC by using the EXEC comrnand.

Each rlA program must be r+ri-tten in position independent code, but
need not be re-entrant. Also, each program must have its ohrn data andstack areas. A TPA area may be used sinply as a data area. fn such casesit is clearly important that the job never becomes active and hence

46

SV_HEIP
sv_cHPtR
SY FREE
sv:BAsrc
sv:rTrüsP
SV-TRTIN
SV RSSPR
svJAlff

Base of systen variables (SY_BASE) = $2SOOO

Base of corntroo heap area
First space in heap area
Base of free RAll area
Base of SupeTBASIC area
Base of transient area
First space in tratrsient area
Base of resident proc. area
Top of RÄll (plus l)

executed! owing to the fact that jobs can be created and discarded
almost at wi11, the total TPA area will grow and shrink dynamlcally.
Note, however, that any one TPA program r.ti11 always take up a

pre-declared amount of sPace.

SUPERBASIC AREA

This area contains all currently loaded SupeTBASIC programs and all
related data (i.e., both program data and SupeTBASIC inEerpreter utility
data). Clearly there is no way of telling, a priori, how much space is
going to be required by a SupeTBASIC program. In viev of this' QDOS

makes a speci-al allowance for the SupeTBASIC area and permits it to grow
and shrink dynamically. The total transient Program area' immediately
above the SupeTBASIC area' can grow and shrink dynamically a1so, and

therefore the entire SupeTBASIC area can shift dynamically.

SYSTEM TABLES AND VARIABLES

All general purpose computer systems require a minimal amount
which to store important variables, pointers' and so on.

of RAM in
QDOS also
as job and
memory is

requires tables to be set uP

channel management. In the Sinclair
located at the base of the RAM maP.

The 68000 processor is caPable
supervisor mode. The two modes use
areas. The supervisor stack lies
tables.

CHANNELS AND HEAP AREA

in RAM for operations such
QL this small amount of

of running in either a user mode or a
different stack pointers and stack

between the system variables and the

This is an area of RAM, directly above the system variables and tables
area, used both for the seEting up and permitting of I/O through
specified channels, and also for common heap items. l/orking storage for
I/O drivers (..g., the keyboard routine) r.'ould be one use for t.his area.
In cases such as this it is the device drivers themselves that allocaEe
space vithin the area. QDOS jobs may also request space from this
rägion. lrthen a particular job is removed any heap allocations owned by

it will be removed also.
This area of RAM is conceptually the same as the transient program

area (in that they are both heaps) and, like the SupeTBASIC area, it is
not possible, a priori-, to know the actual size of it. As such it too
grows and shrinks dynamically. So, there are novt two areas which vary in

"ire dynamically; the TPA+SuperBASIC area' and this area. This is
exactly Ehe situation that is present in simple single user systems
util.izing a single stack. The easiest way of implementing such a system
is to have one region grow from one end of the memory toward the middle,
and the second region growing from the other end of the memory toward

47

the middle. when the two regions meet you have run out of memory! Figure3.1 shows that the same form of implementation is used in QDOS. TheTPA+SuperBASrc area grows downwards and the channel and heap area growsupwards. Any memory left in the middle of these two areas is given overto filing sub-system slave blocks.

FILING SUB-SYSTEM SLAVE BLoCK AREA

This area exists betL'een the dynamically variable superBASrc and channeland heap areas. All
. the remaining ilAM, at uny oi" p"ira i" time, isgiven.over ro filing sub-system slave-blocks. Thäse ,i;;;- blocks areinvisible to rhe user_and,merely duplicate data held on the Microdrives.Their_ use enables QDos r/0 to mäke Microdrive u.."""."--".---uffi.i"na aspossible. T!" bigger the amount of free RAM, the greater will be theefficiency of Microdrive accesses. This mechanism *"än" that QDos isconstantly using all available memory to its greatest advantage.

3.2 Bootstrapping
when the system is first turned on, or a reset is performed, executionwill.start at the base of the system R0M. once trre system-v"ii"bl"" h.u"been determined, and a RAM test carried out, a syster-"..n wirr beperformed to find out the true configurat.ion of the rnu.hin".

.
Firsr the plug-in ROM address r"p iirl be checked c"i oöööool r". thecharacteristic long-vord r$4AFB0001?. rf this ,o.a

-i"--round
it isassumed that a RoM exists and that it contains appropriate code. Nextthe expansion areas are checked for device driuers. Ä";;;i"g control isreturned to the bootstrap routine, an attempt wirl finally ü. made toopen either a device called tBoorf, or th. file rMDvl Boorr. rf thi;attempt is successful then the respective fire wirt b; loaded intomemory (as a SupeTBASIC program) and executed.

3.3 System calls and utilities
There are th'o major types of routine that assembly language programmers
can access from wiLhin their-own application p.og.är" änd subroutines.The first rype is rhar of fTRAp #nf calls mäde-to QDos proceoures; tt.second are those general utilities that are accessed through vectors.

QDOS ROUTINES

system cal1s to QDOS may either be treaEed as atomic or partiallyatomic. Most- QDos routines are atomic in nature. ALonic routi-nes areexecuted with the 68000 processor in supervisor mode. rn this mode noother job can take priority over use of the processor and, therefore,

48

4W

the routine will be executed from start to finish before being
'swapped-out?. Nore that this is the general case only; the routinecould be interrupted by an interrupt serviie procedure. Räutine" whichare partially atomic will complete some sort of primary operation, butwill then allow anorher job to swap-out th9 original curiing processuntil a later moment in time. All the I/0 calls are partially atomicunless specifically accessed as being fu11y atomic. scheäuler calts arepartially atomic.

Note that executing a TRAp #0 lnstruction, on the QL, will force aswitch to supervisor mode. No registers will be altered (except, ofcourse' the stack poi-nter, whlch wilr become Lhe ssp). user mode can bere-entered simply by altering the status regisEer.
QD0S procedures are accessed via fTRAp #it cal1s with register D0indlcating which particurar calr is requlred. chapLers 4 to 6 describechese trap cal1s in detail, but some generalities aie worth mentioningat this point. Register D0, as well as conLaining the procedure index onentry (as a byte), is used also to return an error st.atus (us along-word) co the calling process. rf the error code returned is notzero then an error has occurred. small negative error codes are used toindlcate standard errors. These error codes are listed in Appendix c. rfthe trap call invoked some form of additional devlce driveri'the errorcode returned can .be a pointer to a specific error r"""äg". rn orderthat the two types of error return code might never be .oiiu""o, thepointer type error code is in fact a pointer to an address $8000 belowthat of the rrue error message. poreniialry, all qoos--.oJtin"" canreLurn the error rERR.Bpt (-15), signifying i6ad parametert.
rn addition ro rhe use of registei Dö, data'registers Dl to D3 andaddress registers A0 to A3 are variably used to pass varues to and fromthe QDOS procedures. when the appropriate registers have been set forany one call the appropriate routine is accesseä by simply executing theappropriate 68000 trap instruction. For example, io

"uppi""" the cursorin the wlndow belonging ro channel rD $ro00l, the forlowing.nuy be used:

move.b #ls,do
oove.v #Ord3
move.1 #glü)O1,aO
trap #3

;Suppress cursor routine
;Return irediately
;Channel II)

.
The full description of this QDos routine, given in chapter 6, showsthat it is capable of returning three errors (tie two lisled and themore general rbad parametert error). rt would of course be wise to checkfor these errors after Ehe trap call has been made.

UTILITY ROUTINES

These routines are' as far as this text is concerned, a mixture ofsimpllfied rrap routines and superBASrc uti-1ity routines. Each rourine

ls discussed in deLail in Chapter 7. By using these routines the
assembly language programmer can greatly simplify basic I/O code and can
even incorporate floating point calculations into application programs!

The method of accessing either type of utility is the same, and simply
i,nvolves setting up the appropriate call paramet.ers and then performing
a subroutine call to the required vector. For example, to,send out the
Ascrr representation of an integer word in the memory location labelledIRESULTT to the command channel (#0), the following cäuld be used:

oove.u
sub.l
[x)ve.v
jsr

result: defs 2

result(Fc),dl ;Get result
aOraO
#SCE,a4
(a4)

;Select channel zero
;Convert and print routine

;Integer result register

;

once again it would be normal to check for all possible error return
conditions.

There are four Microdrive support rout.ines available that have to be
handled in a slightly different way. First, their access vectors
actually point Eo an address $4000 bytes before the true entry poi.nts.
rt is lmport.anl therefore to add on this offset when making the vectored
ca11s:

e.8.

Second, they
return points.

rnove.v nd.verinra4
jsr $aOOO(a4)

do not return an error code. Instead, they have multiple

50

