Simple As ABC

Simple algorithms do work in maze－solving．This robot advances into empty spaces until it meets a dead－end－at squares F ．I and P ，for example．It then retreats to the last junction it encountered－ square G here－marking all the intervening squares as useless in its mental map．If there are no untried routes from a junction the robot retreats to the junction before that，and so on，all the way back to the entrance，if necessary－in which case the maze is＇blind＇or insoluble

Solving The Maze

\$1, (0H+N+*+CEMM GA********.*
\$1, (0H+N+*+CEMM GA********.*

OWID FRM*
OWID FRM*
get1 FtM*N..**..........******
get1 FtM*N..**..........******

24
 XISND(=T1)
24
 XISND(=T1)
:(t) HTt=-1:GG=-2:WL= 42:WF"CHFE (WL)
:(t) HTt=-1:GG=-2:WL= 42:WF"CHFE (WL)

2009 x=Bx-1:Y=gY-2:DF=
2009 x=Bx-1:Y=gY-2:DF=
42402 FOEK=1TOS:P:=PF+PF:NEXT K:P=FH%+FF
42402 FOEK=1TOS:P:=PF+PF:NEXT K:P=FH%+FF
240\pi DATA 0, 1,"0", -1,0,",",0,-1,*", , , 0,"
240\pi DATA 0, 1,"0", -1,0,",",0,-1,*", , , 0,"
2400 FOR K=1 T0 4, READ LX(K),LY(K)+RE(K)
2400 FOR K=1 T0 4, READ LX(K),LY(K)+RE(K)
A90 NEXT KIRETUEN
A90 NEXT KIRETUEN
599 FEM*****.........********
599 FEM*****.........********

t001 REM*+**+****************
t001 REM*+**+****************

71,G L=g:ND-G:FOR S=1 I0 4
71,G L=g:ND-G:FOR S=1 I0 4
2200 IF NX:I OR NX>S2 THEN NEXTS:RETURN
2200 IF NX:I OR NX>S2 THEN NEXTS:RETURN
D220 IF NYCI OR NY SI THEN NEXTS, RETURNN
D220 IF NYCI OR NY SI THEN NEXTS, RETURNN
zob, Mz NYC1 OR NYISZ THEN NEXTS: RETURN
zob, Mz NYC1 OR NYISZ THEN NEXTS: RETURN
72BG IF Mz=HM THENQ ND=S:S=A:L=1
72BG IF Mz=HM THENQ ND=S:S=A:L=1
200 NEXT EIRETURN
200 NEXT EIRETURN
999 REM*********************
999 REM*********************
80008 REM* MOVG
80008 REM* MOVG
:W0 MZ(X,Y)=DR=E: =T
:W0 MZ(X,Y)=DR=E: =T

BIaQ ORN RE(FL):XOX+LX (ND): Y=Y+LY(ND)
BIaQ ORN RE(FL):XOX+LX (ND): Y=Y+LY(ND)

3490 RETIRNN
3490 RETIRNN
8995 FEM*********************
8995 FEM*********************
ga0a REM* PRINT THE MAZE
ga0a REM* PRINT THE MAZE
9日S1 REH********************
9日S1 REH********************
9040 FRTNT CLE: :RD=1:CD=1
9040 FRTNT CLE: :RD=1:CD=1
5050 W|=42:Wt=CHRA (WL)
5050 W|=42:Wt=CHRA (WL)
900| sma⿱
900| sma⿱
4070 FOR }\textrm{N}=1.T0:S2+2:TEFT+WE:NEXT
4070 FOR }\textrm{N}=1.T0:S2+2:TEFT+WE:NEXT
900日0 E E=W\&+L.EFT: (SN.S2)+WF
900日0 E E=W\&+L.EFT: (SN.S2)+WF
9100 FRLNT TF;FOR J=2 TQ \$Z +1
9100 FRLNT TF;FOR J=2 TQ \$Z +1
9120 FRINT EFINEXT JIPRINT TS
9120 FRINT EFINEXT JIPRINT TS
8140 FOR F=1 (10 SR/2
8140 FOR F=1 (10 SR/2

9200 G0G(18 9500:PRINT WF:NEXT K
9200 G0G(18 9500:PRINT WF:NEXT K

q3S5 RO=GY: CO=5x:GOSUB950%\&FRINT"N.
q3S5 RO=GY: CO=5x:GOSUB950%\&FRINT"N.
4499 FETURN
4499 FETURN

GNWC REM* POSITION TME CRSR *
GNWC REM* POSITION TME CRSR *
4\&MG PRINT LEFT\&(PE,RO)TAB (CO-1) ; :RETURN
4\&MG PRINT LEFT\&(PE,RO)TAB (CO-1) ; :RETURN

Basic Flavours

Make the following changes to this program：

BBC Micro

49 REM＊＊＊＊＊＊＊BEC＊＊＊＊＊＊＊＊＊＊＊
SO REM＊MAZE SOLVER＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊） 51 REM＊＊＊＊＊＊BEC＊＊＊
9640 CLS：RO $=1:$ CO $=1$
7600 PRIMT TAB（CO－1，F $(3-1)$ ：：RETURN

Spectrum

```
49 REM*****SFFELTRDMA *
```

49 REM*****SFFELTRDMA *
50. REM* MAZE SOL.VEF:******
50. REM* MAZE SOL.VEF:******
51 REM*****SFECTFUM********
51 REM*****SFECTFUM********
L120 DIM M2(S2,S2):DIM R
L120 DIM M2(S2,S2):DIM R
2140 RANDOMIZE
2140 RANDOMIZE
2150. DEFFNR (T4)=INT (RND*N+1)
2150. DEFFNR (T4)=INT (RND*N+1)
9040 CLS:RO=1:CO*-1
9040 CLS:RO=1:CO*-1
9600 PRINT AT (RO-1,CO-1):=RETURN

```
9600 PRINT AT (RO-1,CO-1):=RETURN
```

possible route，and sometimes closed to denote a wall．The mouse that reached the centre in the shortest time won the contest．

At the first British Micromouse contest，there were five entrants only．Some of these behaved in an extremely erratic fashion－one could not even travel in a straight line and even the best of the mice became quite bewildered once it had turned a couple of corners．In the same year，the European Finals of the competition were held， and mice began to arrive from Finland， Switzerland and Germany．Eventually，a mouse did succeed in negotiating the maze correctly；this was Nick Smith＇s＇Stirling Mouse＇，which was equipped with simple mechanical sensors that ran along the top of the maze walls and was powered by a simple stepper motor．Since then，interest in such competitions has grown，and in the 1984 Euromouse Contest in Madrid the fastest time to the centre of the maze was 31.4 seconds．Some contestants were still unable to reach the centre at all，but most succeeded．

MAPPING THE MAZE

So how does a robot mouse negotiate a maze？ In general，the robot must have a precise method of moving itself around so that it knows its exact position at any time－this can be achieved by mounting the robot on wheels and driving it with stepper motors，often using some form of internal position feedback，such as shaft encoders．The robot also requires a set of sensors to detect the presence or absence of walls so that it can construct a＇map＇of the maze．In Micromouse contests，the robots are allowed a couple of training runs，which they use to work out a plan of the course．They then make the competition run， during which they are timed in their attempts to reach the centre．

Although precise methods vary from one robot to another，one answer is to have the robot fitted with a simple tactile sensor at its front．Sitting at the centre of each square of the maze in turn，it can test to see if a wall is directly in front of it．It then turns clockwise through 90° ，tests again，and repeats the sequence．Eventually it will＇know＇ where all the walls are in each square of the maze． This information can be stored as a single four－bit binary number－so 1111 in binary would represent a square with walls on all four sides （impossible in practice，as the robot could never enter that particular square），and 0000 would represent a square with no walls at all． 0111 would then represent a square with three walls and one opening－a cul de sac．

This information could be held in a two－ dimensional array－in BASIC，DIM A $(16,16)$ could be used to represent a maze with 16 ＇cells＇in each direction．The robot then has to work out a route that will take it to $\mathrm{A}(8,8)$ ，if that is considered to be the centre of the maze．Often the robot has a built－ in computer program that works out a tree structure for each route through the maze．Many of the branches of the tree will lead to dead ends or

