Push Off

The 6809 stack pointer always
addresses the ‘top’ of the stack
— thatis, the byte most recently
written to. When a PSHS X is
executed, therefore, S is
decremented by two, so that it
points to the new stacktop, and
the contents of X (a two-byte
register) are then written at that
address in hi-lo format. Notice
that the stack 'rises to zero’ —
the stack pointer paints to lower
locations in memory as the
stack grows

Pull Together

When PULS X is executed,

the contents|of the two bytes at
the current stack pointer
address are copied to X, and §
is then incremented by two to
point to the new stacktop

Push Off Together

When a multiple-register stack
operation is executed, the
registers involved are accessed
ina pre-determined order —
pC,UorS,Y,X,DP.B,A,CC.
When PSHS X,Y,UAis
executed, therefore, the
contents of U are stacked first,
followed by Y, X and A

2| 8

W
e
& |
-
-
e
]
T
T
g

658 THE HOME COMPUTER ADVANCED COURSE

of plates reached the ceiling, and no more could be
added to it.

Stacks in computers work in much the same
way. The two operations of adding and removing
items are known as pushing and pulling (or
popping), respectively. The two extreme situations
we have just mentioned are referred to as
underflow and overflow.

Stacks can be implemented in a number of ways
(using arrays in a BAsic program, for example), but
the method that we are considering requires a
block of available memory and a register that we
can designate the stack pointer. This pointer is
necessary to keep track of the current location of
the listhead. Unlike a stack of plates, a memory
stack cannot be assessed by inspection since there
is nothing to distinguish a memory location
containing an item of stack data from the next
location, which may not be part of the stack. It's
worthwhile pointing out that, just as data is not
really ‘loaded’ from memory into a register but
only copied, so similarly items are not really
‘pulled’ off a stack — only the pointer to the top of
the stack is changed.

The stack pointer, therefore, contains the
address of the current top of the stack. There are
two variations possible here: the stack pointer can
give either the address of the next free location
where data can be stored, or it can give the address
of the last item of data stored in the stack. This
latter is the convention used by the 6809
processor, although there is no particular
advantage in this over the former method — other
processors use that technique just as readily.

A significant difference of organisation
between a memory stack and a stack of platesina
canteen is that the former grows downwards in the
6809 system: as more items are pushed onto the
stack, the stack pointer address gets lower and
lower—it is said to ‘rise towards zero’.

STACK OPERATIONS

The two 6809 stack operations are represented by
the instructions PSH, to push data onto the stack,
and PUL, to pull it off. These operations can be
applied to either of the two pointers, Sand U, sowe
have PSHS, PULS, PSHU and PULU. The data that is
operated on must come from, or go to, a register,
although a number of registers can be pushed or
pulled in one instruction.

The instruction PSHS X will have the effect of
first decrementing S, the stack pointer, by two (or
one if an eight-bit register is pushed) to give the
address of the next free stack location, and second
storing the contents of X at that address. The first
diagram illustrates this procedure. Notice again
the 6809 hi-lo addressing convention: the hi-byte
($3A) of X is stored at SOOFE , a lower position in
memory than the lo-byte (524), which is stored at
SOOFF. If you use an assembler, these details of
whether stack pointers increment or decrement
are irrelevant — the assembler does all the
memory management necessary.

The instruction PULS X has the opposite effect:

—————— e ——

A

_—ﬁ

