
INSTRUCTION

IisRI SCUBA

Jumping
Stack

PROGRAM
COUNTER

BEFORE
SCOBD

AFTER FTER

*EOM

STACK
POINTER

RTS

PROGRAM

FO
$COBB

$COBC

SCOBD

SCOBE

$F000

$F001

$F002

BD

CO

STACK

68°9
Mill 44. subroutine held in ROM, or for a library routine

that always occupies the same position in memory
— parts of the disk operating system, for example.

When the processor encounters a BSR or JSR
instruction, the current value of the program
counter is 'pushed' onto the system stack using the
S (stack pointer) register.ff your subroutine uses
the S register for anything other than a further
subroutine call, you must ensure that it gets
restored to the correct value. The address of the
subroutine is calculated (in the case of BSR) and
loaded into the program counter. Thus, the next
instruction to be accessed will be the first one of
the subroutine. You must be sure, therefore, that
the subroutine begins with an instruction and not a
byte of data.

A subroutine must end with an RTS (ReTurn
from Subroutine) instruction, the effect of which is
to 'pull' the old value of the program counter back
off the stack. Execution of the program will then
continue from where it left off before the
subroutine call.

The example program we give here is rather
more complex than those we have given
previously, but it can be made more manageable
by the use of a subroutine. The program searches a
table containing strings of unequal length, and
extracts a value associated with one particular
string. The strings are held in the normal way:
beginning with a byte indicating the string's
length, followed by the characters that make up

the string, and ending with a 16-bit address
associated with the string.

The end of the table is marked by a zero length
string — in other words, there is a value of zero
where the length byte should be. We shall assume
that the address of the start of the table is held in
$10, and the address of the string whose match we
have to search for is held in $12. If the duplicate is
found in the table, then the corresponding address
is to be held in $14. If the string is not found, then
$12 and $14 should be both set to zero.

STRING-MATCHING
String-matching is a task that occurs in many
situations — most notably in managing a BASIC

interpreter's string variable accesses: each
identifier (or variable name) must be replaced by
the address in which the value of that variable is
stored.

The problem divides easily into two parts: we
must step through the table until either the string
we are looking for is found or the end of the table is
reached. At each stage in the search we must
compare two strings (the one we are looking for
and the one at the current position in the table) to
see if they match.

This string comparison is an obvious candidate
for a subroutine, because not only is it going to be
used more than once in the program, but it also
enables us to split up the problem into useful

The 'jump and return' implied
in a subroutine call is
managed by saving the
present value of the program
counter, replacing it with the
subroutine call address, and,
finally, restoring the program
counter to its original state.
The stack is an area of
memory used by the
processor for saving the
return address, and the stack
pointer is a 16-bit CPU
register that always contains
the address of the next free
byte of stack space.

When JSR is encountered
at, say, address SCOBA, the
CPU automatically places
SCOBD — the address of ABX,
the instruction following JSR
— in the program counter.
When JSR is executed, the
program counter contents are
'pushed' onto the stack by the
CPU and $F000 is
placed in the program
counter. The subroutine is
thus executed until RTS
(ReTurn from Subroutine), is
encountered, when $COBD —
the return address — is
'pulled' or 'popped' off the
stack back into the program
counter

THE HOME COMPUTER ADVANCED COURSE 619

