
represented in u^sic in much the same way as
single-dimension arrays. The difference is that the
variable now needs two subsc ripts to reference
any location.

If we were writing a BASIC program using this
table of information, the simplest thing would be
to treat the whole table as a single two-
dimensional array. Just as with ordinary
subscripted arrays, we give it a variable name.
Let's call it A (for `Array'). Again, as with ordinary
subscripted arrays, it will need to be DIMensioned.
As there are 12 rows and five columns, it is
dimensioned thus: DIM A(1 2,5). The order in which
the two subscripts are put is important; the
convention is that rows are specified first and
columns second. Our table above has 12 rows
(one for each month) and five columns (one for
each of the five categories of expenditure), it is
therefore a 12-by-5 array.

The DIM statement ser ves two essential
functions. It sets aside enough memo ry locations
in the computer's memo ry for the array, and it
allows each of the locations to be specified by the
variable name followed, in brackets, by the row
and column positions. The DIM statement DIM
X(3,51, for example, would create a variable X able
to represent an array with three rows and five
columns.

Look at the table and assume that the
information has been entered as the elements in a
two-dimensional array labelled A. Find the values
present in A(1,1), A(1,5), Ai;2,1), A(3,3) and A(12,3).

It is possible to enter a table of information as an
array in part of a program by using LET statements,
for example.

30 LET A(1,2) = 25.1
40 LET A(1,3) = 41.5
50 LET A(1,4) =161.30

610 LE- A(12,5) = 51.25
But this is clearly a laborious way of doing things.
A far simpler method is to use either READ and
DATA statements or the INPUT statement with
nested FOR... NEXT loops. Let's see how it could be
done using the READ statement:

10 DIM A(12,5)
20FORR=1 1012
30FORC=1 105
40 READ A(R,C)
50 NEXT G
60 NEXT R
70 DATA 260, 25.1, 41.5, 161.3, 50.55, 260, 35.4,

MBasic Programming

Another Dimension
One-dimensional arrays, as we have seen, store a collection of data
that have something in common. Two-dimensional arrays are used
for tables and charts

So far we have considered two types of variables,
simple variables and subscripted variables. Simple
variables are like memory locations where
numbers (or character strings) can be stored and
manipulated by referring to the variable `label'.
Simple variables can store just one value or string
and have `simple' variable names - N, B2, X, Y3
are examples. Subscripted variables, sometimes
called one-dimensional arrays, can store a whole
list of values or strings. The number of values or
strings that can he held is specified at the
beginning of the program using the DIM statement.
For example, DIM A(16) establishes that the array
labelled A can contain 16 separate values. It should
he noted, however, that many HAStcs accept A(0) as
the first element, so that DIM A(16) actually defines
17 elements. These `locations' are referred to by
using the appropriate subscript. PRINT A(1) will
print the first element in the array; LET B = A(12)
assigns the value in the 12th element in the array to
variable B; LET A(3) = A(5) assigns the value of the
fifth element to the third element.

Sometimes, however, we need to be able to
manipulate data that is best presented as tables.
Note how closely this resembles a spreadsheet (see
page 158). Such data could range from tables of
football results to a breakdown of sales by item
and department in a store. As an example of a
typical table of data, consider this breakdown of
household expenditure over a one year period:

RENT

JAN 26000
FEB 260 00

MAR 260 00

APR 260 00

MAY 260 00

JUN 260 00
JUL 260 00
AUG 260 00

SEP 260 00
OCT 260 00

NOV 260 00
DEC 260 00

PHONE ELECTR.

25.10 41.50
35.40 43.75

29.05 50.70
26.20 44.60
19.30 39.80
20.45 32.60
30.50 26.10
29.50 22.40

28.25 24.45
31.15 34.50
31.05 39.50
28.95 42.20

FOOD CAR

161.30 5C.55

145.90 4E.20

151.20 42,40
155.30 49.20

150.95 48.30
147.65 52.30
150.35 5E.40
148.65 61.20

148.60 55.45
154.60 23.50
160.C5 46.95
210.E0 51.25

Arranging the information in this way allows it to
he manipulated in a number of ways relatively
simply. It is easy, for example, to find the total
expenditure in March by simply adding up all the
figures in the row for March. It isjust as e asy to find
the total expenditure for the year on the telephone
or the car by adding up the vertical columns.
Similarly, it is easy to find monthly or yearly
averages. This table is called a two-dimensional
array. It has 12 rows and five columns.

Two-dimensional a rrays such as this can also be

194 THE HOME COMPUTER COURSE


