
Memory Matters

TAIL HEAD OVERLAP HEAD-HEAD COPY

SOURCE
SC900

SC500
SC400

DESTINATION py

....... • • • • • • • • • • • • • 64.46
SC000

SC BOO

$C600
SC500

$C000

SOURCE

DESTINATION

HEAD -TAIL OVERLAP:TAIL- TAIL C
4.41,44%• nn• •••nn• ••• * ***SC900

$C500
SC400

SC000

I PROGRAMMING PROJECTS/UTILITY PROGRAMS

NAME CALLING

Intelligent Copy
The replace routine has to move
large sections of the BASIC
program up and down in
memory when it inserts new
variable names of different
lengths. In this it encounters the
four possible conditions of the
source and destination
addresses. If it always copies
from the start of the source
block then, when the head of the
destination block overlaps the
tail of the source block, the
copying will overwrite some of
the source data. An 'intelligent'
copy routine will detect this case
and avoid corruption by copying
this source block from the tail
first. A 'dumb' copy always
copies from the head of the
source block

Having looked in more detail at the way a
BASIC program is stored, we can now extend
the variable search program to include a
facility to replace one variable name by
another. Here we look at the BBC Micro
and the Commodore 64 versions; in the
next instalment we will develop the same
program for the Spectrum.

Our variable replace program is a more
demanding utility than the simple search for
variable names that we developed on pages 664
and 700. For this reason we need to add a

machine code program. The BBC Micro's 6502
CPU and the Commodore 64's 6510 CPU have
the same Assembly language, so it is a good idea
to look at them together.

Our first task is to find a method of holding two
separate programs in the computer at the same
time. As we have already explained, we can do
this on the BBC Micro by altering the built-in
BASIC variables PAGE and HIMEM. On the
Commodore 64, we need a machine code
program to alter the various pointers in zero page
memory. The first part of the Assembly language
listing, beginning at the label SWITCH, will do this
for us.

The routine SWITCH will enable us to
accommodate two BASIC programs: one
beginning at address 800 hex (the usual place for
a BASIC program); and the other beginning at
address 9000 hex. SWITCH begins by looking at
the pointer TXTTAB to see which of the program
areas is current, and then changes the pointer
values to make the other program area current.

TXTTAB is changed to point to the start of the
new program area, then FR ETOP and MEMSIZ must
point to the byte after the last byte of the new
program area, while FR ESPC points to the end of
the new program area. The program then
searches down the chain of link address pointers
(see page 704) to find the end of the BASIC
program, using VARTAB as the temporary pointer.
When it finds the two zero link address bytes that
mark the end of the program, it increments the
previous pointer twice and copies the result into
ARYTAB and STR EN D. In this way VARTAB, ARYTAB
and STREND all point to the byte immediately after
the BASIC program.

The main changes to the BASIC program that we
need to make are the extra subroutines at lines
30500 and 30600. The first of these finds the end
of the BASIC program, using the length of line
bytes in the BBC version and the next line
pointers in the Commodore 64 version.

The subroutine at line 30600 actually makes
the change in the variable names. When the old
and new variable names are the same length, the
new name can simply be written over the old.
Where the old and new variable names have
different lengths, the procedure is a little more
complicated. In this case, the program must either
make extra space, or close up any unneeded
space in the program it is changing, and make
corresponding changes to the variables it uses to
keep track of its position in the program being
altered. It must also change the length of line byte
in the BBC version and the next line pointers in
the Commodore 64 version.

726 THE HOME COMPUTER ADVANCED COURSE 1

