
We have now covered some substantial
ground in the Logic course, having
concentrated in particular on the areas of
basic logical principles and Boolean
algebra. In this instalment, we take an
overview of the Hues explained so far, and
provide a series of revision questions and
answers.

Let us undertake a short review of the work we
have covered in the previous instalments. The
principles of logic apply to computers in the design
of hardware that must carry out certain special
jobs. We have already designed an adder circuit,
which when combined with other adder circuits
allows the addition of binary numbers (see page
48). This circuit models the human method of
addition, allowing digits to be carried from one
column to the next.

We used three basic elements in the design of
this circuit, called logic gates. The functions that
these gates could perform were indicated by the
names we gave them (AND, OR and NOT), and
were each defined by a truth table. The truth table
is a simple way of writing down the output(s) from
a circuit for any possible combination of inputs.
Two inputs gave us four (22) possible input
combinations, three inputs gave us eight (21)
combinations, and so on. We also saw how logic
gates can be linked together to give certain desired
outputs. These more complicated circuits could
also be described by their truth tables. In
particular, we designed a five-gate Exclusive-OR
circuit, which gave a true output when only one of

its inputs was true (see page 32).

BOOLEAN ALGEBRA
The combination of logical elements can be
described on paper by a set of symbols rather like
that of normal algebra. The branch of
mathematics concerned with the representation of
logic is known as Boolean algebra„ after the
English mathematician George Boole (1815-64)
who first defined its principles. Each of the three
basic elements of logic has its own special symbol:

AAND E A.B
AORB A+B

INOTA I A I

Just as there are laws that govern the manipulation
of figures in arithmetic and letters in algebra, so
there are special laws that govern the
simplification of logical expressions. The laws of
Boolean algebra are summarised in the table that
follows.

126 THE HOME COMPUTER ADVANCED COURSE

0 00MPUTER SCIENCE/ LOGIC REVIEW

THE LOGICAL
ANSWER

SPECIAL RELATIONS

Relation Dual

A.A=A A+A=A
A.A=O A+A=1
A.0=0 A+1=1
A.1 =A A+O =A
A.(A+B)=A A+A.B=A
A.(A +B) =A.B A+A.B=A+B

DE MORGAN'S LAWS

1) A+ B=A.B
2)A,B =A+B

ASSOCIATIVE LAW

A.(B.C) = (A.Bi.0 =A.B.0
A+(3+C)=(A+BI+C=A+B+C

COMMUTATIVE LAW
A. B = B.A
A +B=B +A

DISTRIBUTIVE LAW

A.(B+C)=A.E+A.0

Using these rules it is possible to simplify logical
expressions and reduce the number of gates
required in the final circuit. In addition to the
algebraic method, we have also discussed the use
of Karnaugh maps in logic circuit simplification
(see page 92). Karnaugh maps represent a
significant advance. Although they do not replace
algebraic simplifications, they do reduce the
amount of effort inherent in dealing with Boolean
algebra. These maps, which are really extensions
of Venn diagrams (see page 46), allow the
grouping of expressions extracted from a truth
table into twos, fours or eights. These groups
represent simpler Boolean expressions, and so
simplification is achieved. In practice, a
combination of k-maps and algebra is often
required to produce the most efficient circuit.

We have also discussed the use of the logical
AND and OR operations in BASIC programming.
We saw how these commands can be used to
combine conditions in BASIC IF... THEN statements.
and how they enable the programmer to turn on
and off isolated bits within a register (see page 66).

As the culmination of this first stage of the
course, we used all our knowledge of truth tables,
Karnaugh maps, Boolean algebra and logic gate
notation to design circuits that would give the
desired outputs for certain defined tasks (see page
106). The following Review Exercise covers all the
aspects of the course so far. Once you feel
confident in using these rules, we can proceed to
tackle more advanced logical theory.

-I

P0


