
Display HEXCHS (Offset)
Extract least significant four bits of Number
Display HEXCHS (Offset)

The final routine needed for handling input and
output is the PUTCR subroutine. This is
straightforward, and the final coded form is self-
explanatory. Having coded all the necessary
routines, we can now design the I/O module itself.

THE INPUT/OUTPUT MODULE
Process:

GetCommand will return Offset in B, which can be
used as an offset into a jump table

GetAddress leaves return address in D
GetValue leaves return value in B, flag in A
DisplayValue is passed in B
DisplayAddress is passed in D

The final coded form of the I/O module is given
on the following page. Now we can return to the
Breakpoint module that we began in the last
instalment (see page 758). We have already given
the code for the second process in this module,
which sets up breakpoints. We put aside the
problem of coding the first process (inserting
breakpoints) because it involved getting an
address. Having now dealt with this task in the
routines given here, we can proceed to give the
coded version of the process — which
incorporates a branch to the GETADD subroutine.

Notice that in the code, the command INC
NUMBP, PCR adds 1 to the Number-Of-
Breakpoints. At this point, A is one less than the
Number-Of-Breakpoints, which is the correct
offset into the breakpoint table. However, the
address is returned in D, and this is going to destroy

Save A

ASCII code for Return

Display it

The GETHX2 Routine
GETHX2 LDB #18

HX4 PSHS X

LEAX HEXCHS,PCR

BSR GETCH

IFOO CMPB #16

LDA #$FF

BRA ENDFOO

CMPB #17

LDA # 1
BRA ENDFOO

LSLB

LSLB

LSLB

LSLB

PSHS

LOB #16

BSR GETCH

ADDB 1,s+

PULS x, PC

The PUTCR Routine
PUTCR PSHS A

LDA -II 13

BSR OUTCH

PULS A.PC

The GETHX4 Routine
GETHX4 LDB #16

BSR HX4
PSHS

LOB #16

BSR HX4

PULS A

RTS

BPLABS FCC

SPACE FCB 32

DISPBP PSHS A,B,X,Y

LEAX BPTAB,PCR

LEAY BPLABS,PCR

CLRB

WHIL01 CMBP NUMBP,PCR

BGT ENDWO1

LDA ,Y+

BSR DUTCH

LDA ,Y+

BSR DUTCH

LDA SPACE,PCR

BSR DUTCH

PSHS B

LDD ,X++

BSR DSPADD

PULS B

BRA WHIL01

ENDWO1 PULS A,B,X,Y

Number-Of-Valid-Chars

Save used register

Get address of Valid-Chars in X

Get Next-Character

If Offset = 16

Set flag to —1 (in two's
complement)

If Offset = 17

Set flag to 1

Shift B left four places to form
most significant digit; B holds
offset in HEXCHS and hence the
binary value

Save B temporarily

Only hex digits now valid

Next-Character

Construct eight-bit number and
lose temporary B

Get Most-Significant-Byte

Save Most-Significant-Byte
temporarily

Get Least-Significant-Byte in B

Get Most-Significant-Byte back in A

Required value is in D

Address of Breakpoint-Table

Address of labels

Set Breakpoint-Number to zero offset

While Breakpoint-Number <-
Number-Of-Breakpoints

Display label

Display a Space

Save B temporarily

Save Address

Restore B

Restore and return

Display-Breakpoint Routine

' 1 2 3 4 5 6 7 8 910111213141516'

ASCII code for a Space

778 'ME 110ME COMPLIER ADVANCED COURSE

