
IF.. THEN.. .ELSE (I F ... TH EN in BASIC) performs
one of two sub-tasks depending on whether a
certain condition is true or not. Consider the
following program, which is designed to find the
square roots of numbers input from the keyboard
unless a `flag' value of —9999 is input (in order to
terminate the program):

10 PRINT "INPUT A NUMBER"
20 INPUT N
30 IF N = -9999 THEN GOTO 70
40 LET S = SQR(N)
50 PRINT THE SQUARE ROOT OF ";N;" IS ";S
60 GOTO 10
70 END

The IF. . . THEN. . . ELSE Control Structure
If the condition is True. the True statements will be executed. It
the condition is False, the False statements will be executed

What line 30 is really saying here is ' IF it is true that
N = — 9999 THEN go to the end of the program ELSE

(if it is not true that N = — 9999) execute the next
line of the program to find the square root'.

The other essential control structure (WHILE..
DO) is not directly available in BASIC, but it can
easily be simulated. WI ILE ... DO is a type of 'do-
loop' and it means 'repeat a statement or set of
statements WHILE a specified condition is true' or
` WHILE a condition is true DO something'.

WHILE ... DO always tests the condition before
the statements are executed, so if the test fails first
time through, the statements (called the body of
the loop) are not executed. As an example,
consider a games program that prompts the player
to 'PRESS SPACE-BAR WHEN READY'. This part of
the program could be written (in 'pseudo-
language' or simplified English) as:

WHILE space-bar is not pressed
DO scan keyboard
start game

In BASIC this could be written:

11 Basic Programming

Keeping Control
All versions of Basic feature `control structures' that govern the flow
of a program. Some machines, however, offer a wide range of
alternatives, with subtle differences

The first 10 parts of the Basic Programming
course have covered almost all of the more
important aspects of the BASIC language. In this
issue we will present an overview of the topics we
have covered so far, deal with a few interesting
asides and give some pointers to where we shall go
next.

First the overview: a high-level language such
as BASIC provides the user with a set of instructions
that are translated internally into a form the
computer can understand. Any computer
program can be written using just two simple
patterns, called `constructs'. These are `sequence'
constructs and 'control structures' of which only
two are essential in BASIC: IF. . THEN.. ELSE and
WHILE . , . DO. Most other computer languages
provide considerably more.

The sequence construct allows the task to he
broken down into a set of sub-tasks that perform
the main task when executed in sequence. The size
of the sub-tasks depends on the language; in BASIC

the sub-tasks are represented by the statements
written on each line, and the sequence is
represented by the line numbers. Thus, if the task
is to multiply the value assigned to a variable by
10, the sequence we could use might be:

110 INPUT N
120LETN=N"10
130 PRINT N

In addition to sequence constructs, we also need
control structures. These are constructs that alter
the order of execution of statements in a program.

The simplest control structure provided by
BASIC is GOTO. This is an unconditional jump (or
branch) that re-directs the execution of the
program to a specified line number without a test
or condition having to be satisfied. GOSUB is also
an unconditional branch, but the program will
always RETURN to the point immediately after the
GOSUB and its use in structured programming is
perfectly acceptable.

The IF ... THEN ... ELSE control structure is
available in BASIC. It takes the form of the IF . .
THEN statement and has the following syntax
(`syntax is the computer jargon for 'form'):

IF (specified condition) is true THEN execute
specified statement (ELSE) execute the next
statement

Note that in standard BASIC, the ELSE part of IF...
THEN... ELSE is implied. In some BASIC dialects and
in certain other languages, Pascal. for example,
ELSE forms part of the statement.

212 THE HOME COMPUTER (OURSE

TRUE CONDITION FALSE

TRUESTATEMENTS I I FALSE STATEMENTS


