
EL: 	 OPERATING SYSTEMS/MACHUJE CODE

ACTION STATIONS

Our introduction to the BBC operating
system concludes with this instalment. We
take a detailed look at the use of vectors,
and investigate how the OS enables us to
interact with the computer via the keyboard
and VDU.

The majority of BBC OS routines are said to be
vectored(see page 878). The OS, on being told to
call the OSCLI routine, first calls a routine at address
&FFF7. This routine then calls the main OSCLI
routine, but not directly. It finds out the address at
which the OSCLI routine is to be found by
inspecting the contents of two bytes of memory in
page 2 of the RAM. These two bytes are called a
vector: the low byte of the address of the routine
concerned is found in the lower numbered byte of
the vector, and the high byte of the address is to be
found in the higher numbered byte of the vector.
Thus, for OSCLI, which is vectored through
locations &208 and &209, the low byte of the OSCLI
addresses is held in location &208 and the high byte
is held in location &209. This is known as the Lo-
Hi addressing convention and is followed for all
stored addresses in all 6502 machines. The
addresses held in each vector are set up by the OS
whenever the machine is reset. Why bother with
such a complicated way of calling a routine in the
OS? It's not because Acorn are determined to
make the life of a programmer as miserable as
possible. On the contrary, this process is designed
to make life easy! How can this be?

You may have noticed that all BBC OS routines
mentioned so far are called at an address in the
range &FFOO to &FFFF. This is no accident. When
such an address is called, a routine is entered that
causes a jump to the address held in the vector for
that particular OS routine, as we've seen in the case
of the CLI and the OSCLI call. Now, the address that
we call between & FF00 and &FFFF is the same in all
BBC OS versions and will continue to be in all
versions to come. If it becomes necessary to
change the OS ROM internal programs then the
OS designers simply ensure that the addresses of
the ROM routines that are put in the vector
locations are altered to take the changes into
account. The user is thus protected from such
changes in the OS provided that the OS routines
are called at the correct entry points. The contents
of a vector may therefore differ in different
versions of the OS, but you won't notice this as
long as you use the entry point addresses in the
range &FFOO to &FFFF.

A second advantage of the use of vectors is that
this method provides us with a means of modifying

the behaviour of the OS routines. We can simply
alter the contents of a vector so that it points to a
machine code routine of our own devising if we so
desire, thus intercepting the normal OS calls. In
later parts of the course, we'll look at the vectors
that are used with each of the major OS routines.

For the moment, let's consider the vector called
USERV, which is pointed to at locations &200 and
&201. This is a rather special vector, in that it
normally does nothing. It is used by two *
commands, called *CODE and *LINE If you type
these in normally then the message Bad Command is
issued. Before sending off a letter of complaint
about a new BBC OS bug, read on!

USERV enables us to define the function carried
out by the *CODE and *LINE commands - user
defined commands, if you like! Why should we
want to do this? Well, * CODE is a particularly useful
way of passing parameters into machine code
programs, as shown in the following table:

Register 	'CODE x, y 	'UNE Text String

A 	0 	 1

X 	Holds the value of the Holds the low byte of
first parameter after the address in memory
*CODE Parameter 	at which you can find
must therefore be 	the first character of
between 0 and 255 	the string after * LINE

Y 	Holds the value of the Holds the high byte of
second parameter 	the address in memory
after the *CODE 	at which you can find
command. Again the the first character of
parameter must be the string after *LINE
between 0 and 255

This table shows the state of the three CPU
registers on entering the routine pointed to by the
contents of USERV. A holds either zero or one, and
thus indicates which of the two commands caused
USERV to be entered. X and V hold values
depending on whether it was a *CODE or a *LINE

command. Thus, * CODE 3, 2 will enter the routine
pointed to by USERV with 0 in A, 3 in X and 2 in V.
Obviously, the routine pointed to by the address
held in USERV will be the routine that we want to
pass the two parameters to.

The program given on the following page shows
a simple *CODE command in action. The machine
code routine itself is assembled into memory
starting at address &C00 as a result of the
assignment statement in line 40 - the integer
variable P% 'maps onto' the processor program
counter, just as A°!0, X% and Y% map onto the A, X
and V processor registers. USERV is set up to point
to the routine by putting the low byte of this

THE HOME COMPUTER ADVANCED COURSE 897

L

