
original list of words without having to go to the
trouble of writing it all out again. One way of
extending a list is to use the operation SENTENCE,
which takes two inputs and makes a list from them.
So SENTENCE "JAM [HONEY JAR] outputs [JAM
HONEY JAR].

TO ADDWORDS1 :LIST -
MAKE "WORDS SENTENCE :LIST :WORDS

END

So we can now extend WORDS with ADDWORDS
[ANXIETY REPRESSION [FEAR OF FLYING]]. The
problem with this is if the variable WORDS has not
previously been assigned a value. The primitive
THING? is used to overcome this by testing if a
variable has been assigned a value; it outputs true
if its input has a value associated with it. We can
now improve our list of extra words with
ADDWORDS1:

TO ADDWORDS1 :LIST
IF NOT THING? "WORDS THEN MAKE "WORDS H

MAKE "WORDS SENTENCE :LIST :WORDS
END

Using a different list of words, we obtained the
following piece of 'poetry' using this procedure:

APPARITION LOUDLY SPOKE SPLENDID
PARANOID PLANET TERRIFIED THE WITH GREEN
APPARITION FLOATING PARANOID ROBOT MAN
FLEW SPOKE FLOATING LOUDLY

One of the more obvious failings of our
computerised poetry is its total disregard for
English grammar. The poems might make more
sense if we could constrain them to some simple
syntactical patterns — such as: noun, verb, noun.
One way to do this is to have a number of lists, one
for each part of speech. We could then choose one
word from each list according to our desired
sentence structure.

We leave this problem for you to explore and
investigate. In the next instalment of the course,
we will show you some ways of how to improve the
turtle's poetry-writing abilities

V\

Socde NIdl\ods 0‘ ‘,.\1 \-OCI° do dok da\ld ..1`1\P-C'el

,

IA° V\a"UmitS

c10n

1\ aod C,00\0. ?.\\ _C,S\ vels\oos, klse..

04d).
03 ‘0 00\0

IdOe .6 ?, 91 \o' d\le
,
 ..01k• PAY ,4•IV\ch kesks

00-0 Ws
OSI? \O 0S-S2

ttio \ddklks d.lek'oe sacde. ksel.

'd\sol 0009 \s'ts
'OPE \W 0

01

add \l

adSW\O\dcdo‘k'oe ed\la\s

Ao 0 •
Ode eo,‘Ya\s

SY-404106(S
eit \S\.S

on some \Sis\
\J

O vC2AAS ,bk1k110‘.011

e‘11erc‘\)el Oe

0010- slc\ka)c.

CP INstac\ \...OGO klse

*.V!A
01 o.-_, Vd

nlote Vat
od\ets)

W

WTI? •.\-\SN kNIC'T 0\ ..c.cm(1._

‘101k \S Ilok.00 01\0°4

01\ke

aPlocedOet° P

O a \\s‘:W\ '00se

ltIse

U\SC add
v1\511.1

00 tVn

s poceono so 020.

stases

2•1

0\ke Pldce6", Oak WOO a<\ e"<`‘‘c 00 a

\St. SO C

O-OV'000 fik\Ok000\ 0\WOWs00\lks"100sed

\\Sk

‘000\

0-001`0‘000(0001

(005

‘0
00003\

Exercise Answers
Answers to the exercises on page 737:

1. Calculation powers:

TO POWER :A :N
IF NOT ((INTEGER :N)=:N) THEN PRINT

[WHOLE NUMBER INDICES ONLY] STOP

IF :N = 0 THEN OUTPUT 1
OUTPUT :A * POWER :A :N - 1

END

2. Converting to hexadecimal:

TO HEX.PRINT NO
IF :NO < 10 THEN OUTPUT :NO
IF :NO = 10 THEN OUTPUT "A
IF :NO = 11 THEN OUTPUT "B
IF NO = 12 THEN OUTPUT "C
IF :NO = 13 THEN OUTPUT "D
IF :NO = 14 THEN OUTPUT "E
IF :NO = 15 THEN OUTPUT "F

END

TO HEX :NO
IF :NO = 0 THEN STOP
HEX QUOTIENT NO 16
PRINT1 HEX.PRINT REMAINDER NO 16

END

3. Testing if a number is even:

TO EVEN? NO
IF ((REMAINDER NO 2) =) THEN OUTPUT
"TRUE OUTPUT "FALSE

END

4. Finding an area using the Monte Carlo method:

TO MC
DRAW PU MAKE "IN 0
MC1 1000 10 100
(PRINT [AREA IS] (:IN))

END

TO MC1 NO :XNO :YNO
IF NO = 0 THEN STOP
RANDOM.POINT :XNO :YNO
IF INSIDE? THEN MAKE "IN IN + 1
MC1 :NO - 1 :XNO :YNO

END •

TO RANDOM.POINT :XNO :YNO
SETXY RANDOM :XNO RANDOM :YNO

END

TO INSIDE?
IF YCOR < XCOR * XCOR THEN OUTPUT "TRUE

OUTPUT "FALSE

END

756 THE HOME COMPUTER ADVANCED COURSE

\\Sk

