original list of words without having to go to the trouble of writing it all out again. One way of extending a list is to use the operation SENTENCE, which takes two inputs and makes a list from them. So SENTENCE "JAM [HONEY JAR] outputs [JAM HONEY JAR].

TO ADDWORDS1 :LIST

MAKE "WORDS SENTENCE : LIST :WORDS

END
So we can now extend WORDS with ADDWORDS [ANXIETY REPRESSION [FEAR OF FLYING]]. The problem with this is if the variable WORDS has not previously been assigned a value. The primitive THING? is used to overcome this by testing if a variable has been assigned a value; it outputs true if its input has a value associated with it. We can now improve our list of extra words with ADDWORDS1:

TO ADDWORDS1 :LIST

IF NOT THING? "WORDS THEN MAKE "WORDS [] MAKE "WORDS SENTENCE :LIST :WORDS

END

Using a different list of words, we obtained the following piece of 'poetry' using this procedure: APPARITION LOUDLY SPOKE SPLENDID PARANOID PLANET TERRIFIED THE WITH GREEN APPARITION FLOATING PARANOID ROBOT MAN FLEW SPOKE FLOATING LOUDLY
One of the more obvious failings of our computerised poetry is its total disregard for English grammar. The poems might make more sense if we could constrain them to some simple syntactical patterns - such as: noun, verb, noun. One way to do this is to have a number of lists, one for each part of speech. We could then choose one word from each list according to our desired sentence structure.

We leave this problem for you to explore and investigate. In the next instalment of the course, we will show you some ways of how to improve the turtle's poetry-writing abilities.

-xCrisis reto print alist in reverse order (usedures 5 that th

Exercise Answers

Answers to the exercises on page 737:

1. Calculation powers:

TO POWER :A:N
IF NOT ((INTEGER : N) $=: \mathrm{N})$ THEN PRINT [WHOLE NUMBER INDICES ONLY] STOP IF: $\mathrm{N}=0$ THEN OUTPUT 1 OUTPUT :A * POWER : $\mathrm{A}: \mathrm{N}-1$
END
2. Converting to hexadecimal:

TO HEX.PRINT :NO
IF: NO <10 THEN OUTPUT :NO
IF: NO = 10 THEN OUTPUT " A
IF:NO = 11 THEN OUTPUT "B
IF: NO = 12 THEN OUTPUT "C
IF : NO = 13 THEN OUTPUT "D
IF: NO = 14 THEN OUTPUT "E
IF : NO = 15 THEN OUTPUT "F
END
TO HEX:NO
IF: NO = O THEN STOP
HEX QUOTIENT : NO 16
PRINT1 HEX.PRINT REMAINDER :NO 16 END
3. Testing if a number is even:

TO EVEN?:NO
IF (REMAINDER :NO 2) $=0$) THEN OUTPUT "TRUE OUTPUT "FALSE

END

4. Finding an area using the Monte Carlo method:

TO MC
DRAW PU MAKE "IN 0
MC1 100010100
(PRINT [AREA IS] (: IN))
END
TO MC1 : NO : XNO : YNO
IF: NO = 0 THEN STOP

- RANDOM.POINT :XNO :YNO

IF INSIDE? THEN MAKE "IN :IN + 1
MC1 :NO - 1 : XNO :YNO
END
TO RANDOM.POINT : XNO :YNO
SETXY RANDOM : XNO RANDOM :YNO
END
TO INSIDE?
IF YCOR < XCOR * XCOR THEN OUTPUT "TRUE OUTPUT "FALSE
END

