
HILOHILOHILO

000100000000

0001001000100100010(11000

000010010001101100011011

MULTIPUER

MULTIPLICAND

PRODUCT

AFTER ONE SHIFTAFTER TWO SHIFTSAFTER THREE SHIFTS

44 Bit Multiplication

MULTIPUCAND HICARRY

MULTIPLIER

0011

MULTIPLE CHOICE
As we continue our investigation of
Assembly language arithmetic, we consider
the problems associated with subtraction,
and the various ways of dealing with them.
We also begin to look at the programming of
multiplication in machine code, and
introduce a new class of logical operations
— the Shift and Rotate op-codes.

MOM

Both the Z80 and 6502 support the SBC (SuBtract
with Carry) instruction, but their implementations
are quite different. On the 6502, the carry flag is
used to handle the borrow facility, which is the
equivalent in subtraction of the carry facility in
addition. In Z80 Assembly language, SBC works in
exactly the same way as the ADC instruction — the
carry flag is set or reset to indicate the result of the
operation.

Suppose that we add $E4 to $5F using ADC
(having cleared the carry flag first). The result in
the accumulator is $43, and the carry flag is set,
showing that the true result is $0143. There has•
been an overflow into the carry flag because the
accumulator cannot contain the full result.

Now suppose that on the Z80 we again clear the
carry flag, and subtract $ E4 from $5F: the result in
the accumulator is $7B, and the carry flag is set. If
we now add $7B to $E4 (having cleared the carry
flag once again) we find the result in the

accumulator to be $5F, and the carry flag is set.
This is entirely consistent, as can be seen:

$5F - $E4 = $7BCarry Set
$5F = $E4 + $7BCarry Set

If we take the carry flag's state as indicating that a
negative result has occurred, then we can interpret
$78 as a two's complement number:

$7B In Binary= 01111011
Take Away One- 1

Gives One's Complement01111010
Negate ---

Gives Two's Complement10000101 = $85

We should expect to find, then, that $5F — $E4
results in the negative number -$85. Let's check
this result in decimal:

$5F =95 decimal
-$E4 = 228 decimal

$85 = -133 decimal

Clearly, this all makes sense as far as it goes.
Suppose now that the subtraction in question was
actually a two-byte sum: $375F — $21E4.

HILO
$375F=14175 decimal

-$21E4= -8676 decimal

$157B=5499 decimal

Shift Times
This example shows four-bit
multiplication for the sake of
clarity—the number of bits
does not affect the algorithm.
The worked example shows
how the product is formed by
the addition of zeros or
shifted versions of the
multiplicand, depending on
whether each bit of the
multiplier is zero or one. The
multiplier bits are right-
shifted through the carry flag,
while the multiplicand bits
are left-shifted from lo-byte to
hi-byte through the carry flag

THE HOME COMPUTER ADVANCED COURSE 297

