
Automatic Writing
The Z80 LDIR and LDDR op-
codes are block transfer
instructions using automatic
increment or decrement: the HL
register is initialised to point to
the start of the source block. DE
must point to the start of the
destination, and BT must
contain the number of bytes in
the block. LDIR and LDDR then
copy the source byte to the
destination byte, automatically
increment or decrement HL and
DE, and decrement BC until it
reaches zero, when the copy is
deemed complete. Notice that
LOIR is a 'dumb' copy (see
page 726) — the programmer's
intelligence is assumed

SOURCE

IP OW011,411 4.

N ADDRESS DESTINATION
BLOCK

6—A111: e
SOURCE •
BLOCKODRESS

Copy Complete •
ogrv n rwirIrr

PROGRAMMING PROJECTS/PROGRAM UTILITIES

ALL
CHANGE
To implement the variable replace program
on the Spectrum, we must use a different
method from the BBC and Commodore
versions. Instead of having the utility
program in a different area of memory from
the program it is working on, the variable
replace program is merged onto the end.

As the variable replace program scans through the
program it makes a copy of the altered version in
an area above RAMTO P. The altered version is then
copied back to the main program area by a
machine code program that adjusts the amount of
space available if the length of the program has
been changed, so that the new version fits into the
BASIC text area.

The first part of the BASIC program is similar to
the variable search program (see page 665). There
are some extra variables, including Altprog, which
points to the start of the area reserved for the copy
of the program, and Alt p o i nter, which keeps track of
where the next byte in the altered program should
go. The main changes involve copying the
program, instead of just reading it. The copying is
done by the subroutine at line 9800, which copies

744 THE HOME COMPUTER ADVANCED COURSE

Variable Replace Program
9000 INPUT "Name to search for? "; LINE
t$
9005 INPUT "Replace by? ,'; LINE r$
9010 FOR i=1 TO LEN (t$)
9020 IF t$(i)>="a" AND t$(1)<="z" THEN
LET t$1i)=CHR$ (CODE (t$(i))-32)
9030 NEXT i
9040 LET TokenforREM=234
9050 LET Duote=34
9060 LET Newline=13
9070 LET Underscore=95
9080 LET Number=14
9090 LET P805=23635
9100 LET Textpointer=PEEK (PROG)+256*PEE
K (PROG+1)
9102 LET Altprog=46000
9105 LET Altpointer=Altprog
9110 LET Lineno=256*PEEK (Textpointer)+P
EFK (Textpointer+1)
9111 PRINT lineno
9120 IF Lineno>=9000 THEN GO TO 9600
9130 LET q=2: GO SUB 9800
9135 LET Lengthaddr=Altpointer
9140 LET Nextline=Textpointer+2+PEEK (Te
xtpointer)+256*PEEK (Textpointer+1)
9150 LET q=2: GO SUB 9800
9160 LET Byte=PEEK (Textpointer): LET q=
1: GO SUB 9800
9170 IF Byte=Newline THEN GO TO 9110
9180 IF Byte<>TokenforREM THEN GO TO 92
20
9190 REM Copy REM unaltered
9200 LET q=Nextline-Textpointer: GO SUB
9800
9210 GO TO 9110
9220 IF Byte<>Ouote THEN GO TO 9280
9230 REM Copy anything between quotes, b
ut stop at end of line in case of unmatc
bed quote
9235 LET q=1
9240 IF PEEK (Textpointer+q-1)=Newtine T
HEN GO SUB 9800: GO TO 9110
9250 IF PEEK (Textpointer+q-1)=Ouote THE
N GO SUB 9800: GO TO 9160
9260 LET q=q+1
9270 GO TO 9240
9280 REM Copy 5-byte binary number
9290 IF Byte=Number THEN LET q=5: GO SU
B 9800: GO TO 9160
9310 REM First character of name must be
upper or lower case letter

9320 IF Byte>=CODE ("A") AND Byte<=CODE
("Z") THEN LET c$=CHR$ (Byte): GO TO 93
70
9330 REM Use upper case instead of lower
case
9340 IF Byte>=CODE ("a") AND Byte<=CODE
("z") THEN LET c$=CHR$ (Byte-32): GO TO
9370
9360 GO TO 9160
9370 LET n$=""
9380 LET n$=n$+c$
9400 REM Letter, digit or underscore aft
er first character of name
9410 IF PEEK (Textpointer)>=CODE ("A") A
ND PEEK (Textpointer)<=CODE ("Z") THEN
LET c$=CHR$ (PEEK (Textpointer)): LET Te
xtpointer=Textpointer+1: GO TO 9380
9420 REM Use upper case instead of lower
case

9430 IF PEEK (Textpointer)>=CODE ("a") A
ND PEEK (Textpointer)<=CODE ("z") THEN
LET c$=CHR$ (PEEK (Textpointer)-32): LET
Textpoi .nter=Textpointer+1: GO TO 9380

9440 IF PEEK (Textpointer)>=CODE ("0") A
ND PEEK (Textpointer):=CODE ("9") THEN
LET c$=CHR$ (PEEK (Textpointer)): LET Te
xtpoinier=Textpointer+1: GO TO 9380
9450 IF PEEK (Textpointer) =Underscore TH
EN LET c$=CHR$ (PEEK (Textpointer)): LE
T Textpointer=Textpointer+1: GO TO 9380
9460 REM End with $ for string variable
9470 IF PEEK (Textpointer) =CODE ("$") TN
EN LET n$=n$+"$": LET Textpointer=Textp
ointer+1: GO TO 9500
9480 REM (if array or function
9490 IF PEEK (Textpointer)=CODE ("(") TH
EN LET n$=n$+CHR$ (PEEK (Textpointer)):
LET Textpointer=Textoointer+1

