
code as they are encountered while the program is
running (they do not do it particularly efficiently,
either). Writing in machine code avoids this
translation process. Unfortunately, writing
Assembly language programs is much more
difficult than writing BASIC, and the cost in time
and effort may not be worth the eventual saving.
However, some programs — those using animated
graphics, for instance — would not work as
intended if they were written in BASIC alone.

There are many other ways of making smaller
savings in processing speed. Use a variable instead
of an actual number (e.g. MAX rather than 267.5)
for faster access to values, especially in loops. Use
different letters to start variable names, and spread
these initial letters evenly throughout the
alphabet. Use multiple statement lines (if that is
possible) and create a sizeable interval between
line numbers (such as 10). With FOR. .. NEXT loops,
if the interpreter permits, leave off the loop
counter variable (for example, use NEXT rather
than NEXT LOOP). Inside a loop, try to avoid
calculating the same value over and over again.
Instead, calculate it outside the loop and
incorporate it as a variable.

SAVING SPACE
Integer arithmetic not only saves time, it also saves
space. Where it may take four or five bytes to store
a real number, it need take only two to store an
integer. This represents a major saving, especially
where large arrays are involved. Other
improvements to the speed of a program will also
save space: using inbuilt or user-defined functions
saves code, as does writing in Assembly language
and using multiple statement lines. Compiling
tends to increase the size of smaller programs and
only saves space for large ones.

Removing REM statements is an obvious space-
saver, and using shorter strings of text for prompts
also helps. Putting large blocks of text into files
that are stored outside the program keeps them
out of the way when they are not needed
(instructions and 'help' files are the biggest
burdens). Remove as many spaces as is legal
within a line, and use shorter line numbers and
shorter variable names. If an array needs to be
dimensioned but its exact size is not known, don't
just guess a convenient round number. Instead,
leave it until the information needed is on hand
and then dimension it with a variable, like this:

10 INPUT"How many instances are in this

category?";INSTANCES%
20 DIM ARRAr/o(INSTANCES`)/0)

This is called 'dynamic dimensioning' and it is
something that BASIC offers and most other
languages don't — so make the most of it!

Another technique involves increasing BASIC'S

memory allocation in RAM. This can be done by
using commands like HIMEM. What these
commands usually do is to change the area in
RAM that is available to BASIC programs and
variables. The normal use for this is to store

machine code programs in a safe place where they
won't be overwritten, but the same command can
be used to access extra space from that normally
reserved for the screen memory. If it does not
matter what is appearing on the screen, then this is
a good way to get an extra kilobyte of RAM. If it is
not possible to change HIM  EM, the screen memory
can still often be used by PEEKing and POKEing
directly to the memory locations reserved for it.

If all else fails and the program simply will not fit
in the space available, many BASICS have a CHAIN
command that allows one program to pass control
to another. Some BASICS allow use of the COMMON
command; this passes particular variables and
their current values to the next program. CHAIN on
home micros (if it exists at all) is usually a very
simple command that enables all or none of the
variables from the first program to be passed to the
second.

If programs are written in a structured way, the
individual subroutines should be capable of being
written and tested independently. Their execution
can also be individually timed. Write a simple
timer like this one:

100 REM Use this first section to set any variables
105 REM that the routine will need (don't forget

110 REM to dimension arrays and fill them with
115 REM realistic data too if the routine uses any).
120 REM This program is in BBC BASIC and TIME

125 REM is a pseudo-variable that holds a value in

130 REM hundredths of a second, generated by the

135 REM system clock

200 START=TI M E
210 GOSUB 2000:REM The routine being timed is

called here.
220 FINISH=TIME
230 PRINT "Execution took"; (FINISH-START)/100;

"seconds."
240 END

With this routine it is possible to experiment with
different algorithms and other ways of increasing
speed.

How To Be Quick
•Weigh carefully the demands of good style against
the need for speedy, sometimes incomprehensible,
code.

•Compile when you can; define functions and
procedures if you can't.

•Avoid file accesses.

•Avoid absolute real numbers. Initialise variables
and use integer arithmetic, if your micro allows it.

•Design your algorithms carefully and learn from the
example of others.

•Consider the advantages and disadvantages of
machine code. While it may be fast, it takes longer to

write and to debug.

•Condense your code, and remove your REMs once
1 you have a working version.d

THE HOME COMPUTER ADVANCED COURSE 597


