
PROGRAMMING PROJECTS /COMMODORE 64 GRAPHICS

DEFINING TERMS

The Commodore graphics set is extensive,
but it is often necessary to create some
special characters, or even to redefine the
entire character set. In this instalment of our
graphics series we introduce the techniques
of user-defined graphics on the
Commodore 64 and continue to develop the
Subhunter game.

The process of creating your own characters on the
Commodore 64 is not straightforward: there are
no special-purpose commands in Commodore
BASIC, so the whole operation has to be carried out
using PEEK and POKE to access and change the
contents of memory.

The Commodore 64 character set consists of a
block of ROM starting at memory location 53248.
Each character appears on the screen as a pattern
of dots in an eight by eight dot matrix: describing
this pattern of 64 dots requires 64 bits, or eight
bytes. The eight bytes from location 53248 to
53255 describe the `®' character, the first
character in the set; it has a screen code of 0, which
means that if you POKE the value zero into one of
the bytes of video RAM, this character will appear
on the screen. The next eight bytes, from 53256 to
53263 describe A' (screen code 1), and so on.

We cannot change these dot matrix definitions
in ROM, so we must copy some or all of them into
RAM and make the changes there. We can then
make the Commodore use our RAM character set
for writing on the screen, rather than using its own
definitions in ROM.

The ROM character set shares its address space
in memory with input/output devices such as
cassette players and disk drives. Normally, the
65 1OA CPU treats this memory space as an input/
output area, but it can be programmed to regard it
as the character set location. This may seem
strange, but the CPU doesn't normally do the
work of accessing character definitions from
ROM and sending them to the screen. That task is
delegated to a subsidiary chip under CPU control.
The contents of location 1 determine the status of
I/O operations, and bit 2 of this location acts as a
switch on the way in which the CPU regards the
character set ROM. If this bit is set to zero, then the
CPU finds the I/O devices occupying the space.
The other bits of location 1 have similar special
functions in controlling the system, so we must be
careful not to alter any of them while changing bit
2's value. This is best achieved by using the logical
operators AND and OR.

Suppose that the contents of location 1 are:

Fit 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1

We wish to change bit 2 to zero, One way to do this
would be to calculate the decimal value of
01101011, and POKE it into location 1, but this
works only if we know that the previous contents
of location 1 were 01101111. A better way to adjust
bit 2 is to use AND and PEEK. The following
command PEEKS location: 1, thus establishing its
original contents, ANDs them with 251 (11111011
binary), and POKES the result back into location 1:

POKE 1,PEEK,1) AND 251

The effect of this command can be illustrated here:

Bit 7 6 5 4 3 2 1 0

- Initial cortents

AND I = 251 binary

- Result of ANDing
each pair of bits

No matter what the original value of bit 2, AN Ding
it with zero will always produce a zero result;
AN Ding all the other bits of the location with one
simply produces a copy of their original value. The
binary number 1111101 (251 decimal) is called a
mask or overlay, and here we are using it as an
AND-mask'.

To set bit 2 to one without affecting any of the
other bits, we use the following command:

POKE 1EEK(1) OR 4

Bit 7 6 5 4 3 2 1 0

- Initial contents

OR I = 4 binary
Nanufinga

= Rerult of ORing
each pair of bits

This ensures that BASIC will not overwrite our
character set. When the copy is complete, the
CPU can be reset to address the I/O devices, and
the interrupt time re-started.

The final piece of the jigsaw is forcing the
screen-handling chip to use our character set,
rather than the system set in ROM. Bits 0 to 3 of
location 53272 point to the start address of the
character set, and the following table shows how
the Commodore 64 interprets the values of these
bits as pointing to particular addresses:

minglin

o

"gnu

232 THE HOME COMPUTER ADVANCED COURSE


