
best way to start such a library is to go through
existing programs and take out all the subroutines
that are well written and have some general
applicability (I/O routines, date routines, upper
to lower case conversion, and soon). Each routine
should be saved as a separate file, and these should
be grouped together according to function (if they
are to be stored on tape then each function group
should be stored on a separate cassette) with
meaningful file names to identify them. Keep a
card index or a database of the filenames, together
with a description of what each routine does.

Needless to say, it is important to ensure that all
library routines are thoroughly tested and
debugged. They will be used in programs for
which they were not specifically designed, so
make sure that they will trap any illegal input
values. You should also ensure that any values
output from the library routines will not cause
problems to the program that uses them. Make
each routine as efficient as possible and include as
much internal documentation as is necessary for
you to understand the routine's function at a later
date. Add to the collection as the need arises —
there is no point in adding new routines 'on spec'
as experience shows that this is largely wasted
effort. Don't forget to number the lines of the
library routines according to the convention
established (this will save on RENU Mbering when
the routines are merged into a new program).
Useful library routines may be found in computer
magazines, which often publish routine listings as
well as complete programs (and these can be
cannibalised to obtain the useful subroutines).

To make use of a library like this, it is necessary
to have a way of merging routines together to form
a complete program. For those using compiled
languages, a link-loader' or similar program is
usually supplied; this takes compiled modules and
joins them to make an executable program. For
BASIC programmers, unless a compiler is available,
the easiest way to achieve this is to use a
combination of R EN U Mber and MERGE commands.
To merge a library routine into the new program,
first load the program, decide where the library
routine will go and make sure there is a large
enough block of unused line numbers for it to fit
in. If necessary, R ENU Mber the library routine so
that it will go into the space allotted to it. Then use
the MERGE command to join the two programs;
check that everything works as it should and SAVE
the new program with the library routine in place.

GROUP EFFORTS
It is often the case that home computer users work
together in groups to write programs — either at
school or in their user clubs. Most of what has been
said about program design and programmer
efficiency is particularly relevant to such team
efforts. In fact, most of these ideas and the concept
of structured programming were developed in
order to split the workload of commercial
programming projects. Thus, a number of
different programmers could work on different

MERGE tta,.

•The Spectrum has the straightforward version of
the command: it merges the named file with the
program in memory; the incoming line overwrites
the existing line in the event of a line number
collision.

•With the BBC Micro *SPOOL command you can

create ASCII versions of the program files, then
write a BASIC program (or use a word processor) to

access these files, one program line at a time.
Merge the two files into a third ASCII file, and

convert it into a program using the *EXEC

command.

•On the Commodore :OPEN 1,1:CMD1:LIST:PRINT

#1 CLOSE 1 creates on tape an un-named ASCII file
of the program in memory. LOAD the other program,
and add to it a routine to INPUT and print the ASCII
file lines on screen. Stop the program and RETURN
over the screen, thus merging the two programs

parts of the same program at the same time to
produce a working program.

For BASIC programmers to work like this, it is
essential to agree on the conventions to be used
when coding. Assuming that a design has been
agreed on, the programmer of an individual
module needs to know:

1)What the files will be and how they will be
organised.
2)What conventions have been agreed for
naming variables. The most important variables,
such as arrays that are used throughout the
program, should be named in advance. A
convention should be agreed for naming local
variables. Variables that are passed between
modules should either be named in advance or a
way of ensuring that each is unique should be
devised — adding the module number of the
originating module as a suffix, for instance.
3)What library routines are available to the group,
the format of each of these, how their variables are
named, what they do, and how well tested and
debugged they are.
4)How error-handling routines are organised (for
instance, whether each routine copes with its own
errors or whether the routines set an error 'flag',
which is then dealt with by the control routine).
5)The exact function of any module that is being
written.
6)The exact range and type of data that each
individual module will accept as input and return
as output.

This implies a lengthy planning stage with many
meetings to agree strategy, followed by a short
programming stage. Testing — including the
testing of group-produced programs — will be
dealt with later in the course. The next instalment
will concentrate on the design of programs that
will run faster and use less memory.

THE HOME COMPUTER ADVANCED COURSE 567


