
Ll Insights

Cracking The Code
Type your computer language onto the keyboard and a single
program working within the micro will speedily convert it into the
machine's own code

Disk Operating System
When prog'ams are stcred on a
floppy disk the irformation is
distributed at random around
the surface of the disk. The disk
operating system is a program
that automatically keeps track of
the location of each byte of
information.

The illustration shows the
information stored on one small
section of a disk. This is
represented in 'hexadecimal'
form in the left-hand block and
the equivalent character is
shown on the right. Codes that
do not correspond to characters
that are to be prirted are shown
as dots

Although microcomputers appear to perform
si milar functions, each model is unique. Some are
supplied with programs already built in, while
others require such programs to be `read' in from
an external disk or cassette tape.

Some machines contain a single, all-embracing
program that allows both the entry of programs,
and the use of direct instructions such as SAVE or
LOAD. Other models need separate programs to
carry out these functions.

There arc, however, similar principles upon
which most popular microcomputers operate.
The movement of information to and from
external storage devices (disks and tapes) to the
screen is, in each case, controlled by the keyboard.
Also, every machine can communicate with other
external devices such as printers, plotters, and
scientific instruments. And most micros allow
their users to write programs in languages similar
to English, such as BASIC for example.

When you type a BASIC program at the
keyboard of your computer, a program called the
`operating system' passes what you have typed
both to the screen, and to a BASIC interpreter
program. This means that three programs are
being held inside the computer at the same time;
namely the operating system, the BASIC interpreter
and your own program.

When you run your program, all three
programs would appear to be active at the same
time. Each BASIC instruction in your program is
translated by the interpreter and, one by one, the
resulting machine code instructions are passed to
the microprocessor for action. At the same time,
the operating system is checking the keyboard for

data entry and possibly displaying this on the
screen.

If one of your program instructions asks for
something to be printed or written on disk, for
example, then the interpreter would request the
operating system to carry out this task.

The illusion that several things are happening at
once is due to the microprocessor's incredible
speed. It can process instructions from the
operating system and the interpreter so quickly
that they can both be served at the same time,

Some machines can run even more quickly by
allowing the arrival of data to `interrupt' normal
processing. In this way, there is no need for the
operating system to check the various external
sources of data, such as the keyboard or disk
drives.

A less sophisticated type of word processor is
called an 'editor'. These tend to vary considerably
in quality, and you will probably find the editor
built into the BASIC interpreter equally as good.

Instead of using an interpreter to run your BASIC

programs, you could use a compiler. Whereas the
interpretor has to translate each instruction every
time it is encountered, the compiler translates
your entire program into computer machine code
for once and for all. Programs which have been
`compiled' run much more quickly than their
`interpreted' counterparts.

BASIC is a very popular language for writing
programs. It has the advantage of being very close
to plain English, and is ideal for beginners. But the
more adventurous programmer can make his
programs run much faster by using an assembly
language. This is not like English at all, therefore
the programmer must have a fairly detailed
knowledge of how the microprocessor performs
its functions.

Each instruction that you give the computer has
a direct equivalent in machine code. An assembly
language is a collection of abbreviated instructions
such as MV! (Move Immediate) or JZ (Jump on
Zero). These are used to help the programmer
remember their functions.

If you master an assembly language, then the
next thing to tackle would be machine code, but
there would be very little point unless you really
needed to shave tiny fractions of a second off a
program's execution time.

Machine code on microcomputers is generally
written in a form called Hexadecimal. This is a
form of numbering to a base of 16. You count
from 0 to 9 normally, then go on to use the letters

84 THE HOME. COMPUTI?R C'OURSP.


