
® Basic Programming

Directory Enquiry
Using all the techniques of Basic programming that we have learnt
so far, we now take the first steps towards developing a database
program

Now that many of the fundamentals of BASIC have
been covered, it is time to put what we have
learned to good use by developing a real program.
Of course, all the programs we have encountered
so far have been `real' programs in the sense that
they performed a specific task, but they were
illustrations of how various parts of the BASIC

language work rather than the kind of program
you might want to use every day. They illustrated
how the `cogs' of BASIC could be put together to
make a simple mechanism. Now let's build a
whole clock!

One of the most common questions put to
computer users by non-users is: `What can the
computer actually be used for?' The question is
not as simplistic as it seems. The usual responses
tend to go along the fines of: `Well, you can
computerise your recipes' or `You can create a
computerised telephone or address book.' This
tactic seldom works because the questioner
usually responds with remarks like: `I can look at
my recipe book when I want to cook something
and I can look through my address book when I
want to find somebody's address, without the
trouble of spending hours writing a program to do
it.' At what point does a problem become worthy
of a computer solution rather than a conventional
solution? We'll answer this by working through
the specific example of a computerised address
book.

An ordinary address book commonly features
an alphabetical finger index designed to enable the
user to locate, very approximately, the location of
any particular name. Names are usually added as
and when needed, and not in strict alphabetical
order. Your first entry under P might be David
Peterson. Later, you might add Brian Peters or
Shashi Patel. Although these are not in
alphabetical order, they are all grouped together
under P so the task of finding any particular
surname beginning with P will not be too great. On
the other hand, if you did not use any kind of index
finding a name would be a nightmare.

The other entries usual in an address book are
the person's address and telephone number
together, perhaps, with more personal informa-
tion. A conventional address book, however,
couldn't give you a separate list of all the people
who live in Birmingham, or who corresponds to
the telephone number 258 1194.

Now this may not represent a serious
shortcoming, but if you were the owner of a small
mail order company it could be a valuable asset if

232 THE HOME COMPUTER COURSE

you could obtain specific information about the
people on your mailing list. For example, if your
had a new line of children's nightwear you could
anticipate new orders by informing your clients,
but to save on postage it would probably not be
worth sending `mail shots' to customers without
children. This is the sort of consideration that must,
be evaluated before deciding if a problem is
worthy of a computer solution or a conventional
solution.

If the computer solution is suitable, then the
next consideration must be whether to buy
commercially available software or not. A glance
through the advertisements in the computer
magazines would suggest that every possible
eventuality has already been thought of by
computer programmers. Closer examination,
however, may show that a commercially available
program may not do exactly what you want, or it
may not be available for your model of computer,
or it may be too expensive. The cost of a program
generally reflects the development costs. A word
processor package might cost £350, but writing
your own could cost you far more if it takes you six
months of dedicated work.

On the positive side, software you write
yourself can be made to do exactly what you want
it to. The other factor is the sheer satisfaction of
successfully writing a major program for yourself
and by yourself.

Designing a program involves several stages.
The first is a thorough understanding of the
problem. This involves a Clear Statement of the
Problem — the CSP stage.

The second is to find an approach to the
solution of the problem. This involves a
description of the expected form of the input and
output as a `first level description' of the problem.
The problems and the solutions should be stated
in the broadest terms and these should be
gradually refined until we are at the stage where
we can code into a particular language.

The third stage is the coding itself. We will use
BASIC as our high level language, but it could just as
well be any other language. Up to the final stage of
coding into BASIC, we will use a pseudo-language
intermediate between the freedom and flexibility
of English and the rigid structures of an actual
computer language such' as BASIC.

The approach to programming just described is
usually called `top-down' programming. It works
from the topmost level — a general statement of
the overall objectives, through various levels of


