
Though most successful commercial games
are fairly lengthy, and written in machine
code for speed, it is possible to write an
entertaining game in BASIC. The game that
follows is fairly simple, and indeed takes up
only 35 lines of BASIC, but is still good fun to
play. Furthermore, it is a two-player game,
so is less anti-social than most!

The game is called 'On Your Bike' and is based on
a scene from the classic Walt Disney film Tron. It is
a contest between two opponents that requires
skill and fast reactions and takes place in an
enclosed arena. You each have a bicycle that
travels at an incredible speed and cannot be
stopped. Your only control allows you to turn
through 90 degrees at top speed.These bicycles
leave solid walls of light in their trail, and the object
of the game is to force your opponent to crash in

ti-

0
ai
tr

di

PI

the ever-tightening 111,1/ e you create as you zoom
around the arena.

The game has been implemented on the ZX
Spectrum, which is not known for the speed of its
BASIC. As this is an action game, the program has
been designed for speed rather than elegance,so
much of the listing may seem a little unstructured.

632 THE HOME COMPUTER ADVANCED COURSE

144.v PROGRAMMING PROJECTS /BASIC GAME

ON YOUR BIKE
Subroutine calls, and other structured devices
have been avoided as they would have sacrificed
execution speed.

The first stage is the design of the arena and
score display. As you can see this is fairly simple,
which contributes to the shortness of the final
program.The only point to note is that the border
of the arena is now one character in from the
usable screen area. This is to ensure that the
graphics resulting from a collision with the arena
wall do not go off screen:

10 LET p=0: LET q=0
100 BORDER 0: PAPER 0: CLS
110 PRINT AT 0,1; INK 6; "Bike One= "; q
120 PRINT AT 0,19; INK 5; "Bike Two= "; p
130 INK 2
140 PLOT 8,8: DRAW 239,0: DRAW 0,159
150 DRAW -239,0: DRAW 0,-159

The arena has been drawn in red, and we have
chosen yellow to represent bike one, and cyan
(blue) for bike two. The variables p and q hold the
current score for the two contestants.

The next stage is to initialise all variables, and
here we have to start thinking about how we are to
implement the main action of the game. The
action for a single bike is fairly straightforward,
and is shown in the flowchart. Using POINT we
check if the bike's current position is occupied, and
move to the collision routine if it is. If it is not, we
move into that position using PLOT, and then read
the keyboard to check for any change in direction.
Our position is then incremented by one in our
current direction, and the cycle begins again. We
therefore need four variables: two for our current
x and y co-ordinates, and two for our current
direction along the x and y axes.

However, we are dealing with two bikes moving
at the same time. An elegant solution would be to
use four two-element arrays, x(2) and y(2), for the
positions for example, but this would slow the
game down so we have to use eight separate
variables:

200 LET x=40: LET y=88
210 LET m=215: LET n=88
220 LET a=1: LET b=0
230 LET i= -1: LET j=0

This sets the initial positions of the bikes, and sets
them moving towards each other one pixel at a
time. The basic action of the game is then fairly
simple to implement:

400 IF POINT (x,y)=1 THEN LET col=6: GOTO 700
410 IF POINT (m,n)=1 THEN LET col=5: LET x=m:

LET y=n: GOTO 700
420 PLOT INK 6;x,y:PLOT INK5;m,n


