
"—"' Basic Programming

same way conceptually — one file containing
many records, each record containing many fields
— just like our computerised address book.

A sequential file on a disk or cassette tape,
however, doesn't care how the information in it is
used or organised by the program. Data files just
contain a series of data items, and each individual
item of data is called a record. A single record in a
data file wouldn't, therefore, normally correspond
to a record in the datab ase sense of the word.

It's up to the program to read in records from the
data file and assign them to va riables or arrays.
These va riables and arrays need to be organised to
form a `conceptual' record containing a limited set
of related information. There is no one-to-one
relationship between the records in a data file and
the records comprising a database.

Once the set-up program has been run it should
never be needed again. In fact, if it ever were run
again it would destroy any `legitimate' data you
might have entered in the add ress book database.
We will see why this would happen when we look
at the modified *RDINFL` program.

When the program is run it does not `know' if
there is legitimate data in the data file or not. The
first thing *RDINFL does is to OPEN the 'ADBK.DAT'
file and read in the first record (or data item). This
is not read into an element in an array, as you might
expect, but into a special st ring variable we have
called TEST$. Before any other records are read in,
TESTS is checked to see if it contains the string
@ FIRST. If TESTS does contain @FIRST, the program
knows there is no valid data in the file and so there
is no point in trying to read in any more data and
assign it to arrays. Consequently, the file can he
closed and the rest of the program can continue.
Since there is no valid data in the file, the user can
do nothing useful until at least one record has been
entered and so the value of TESTS can also be used
to force the program to go to the 'ADCREC'
subroutine so that at least one valid record will be
added before anything else can be done.

If, on the other hand, the value of TESTS is not
^ FIRST, the program can assume that there is valid
data in the file and can start assigning the data to
the appropriate arrays. The modified *RDINFL*
subroutine follows:

1400 REM 'RDINF:° S'BR07TINE
1410 OPEN "I",#I,"A)BK.DAT"
1420 IN?UT 11,T?ST$
1430 IF TESTS = "@FIRST" THIN GOTO 1530; REM

CLOSE AND RETURN
1440 LET NANFLD$(1) - T ST$
1450 INPUT i1,MODFLD$(I),STRFLDS(1),TWNFLD$

(1),CNTFLD$(1),TELYLD$,'1)
1460 INPUT J1,NIXFLD$(1)
1470 LET SIZE = 2
1480 FOR L • 2 TO 50
1490 INPUT i1,NAMFLD$(L),MODFLD$(L),STRFLD$

(L;.,TWNFLDS(L),CNTFLD$iI.)
1500 INPUT t1,TELFLD$(L),ND:{FLD$(L)
1510 REM SPACE FOR CALL TO 'SIZE'

SUBROUTINE
1520 NEXT L
1530 CLOSE J1
1540 RETURN

Line 1420 assigns a single record from the
AOBK.DAT file to the variable TESTS. The next line
then checks this to see if its value is ©FI RST. If it is, a

GOTO is used to jump to the line that closes the file
(line 1530) and then the subroutine RETURNS to the
calling program. No fu rther attempts are made to
read in data. Assuming that there is no valid data in
the file, program control will be retu rned to

N ITI L°, which then calls *SETFLG* All this routine
does at the moment is to set the value of SIZE to 1 if
TESTS = ©FIRST. The code for *SETFLG* is given
below. Note that there are several RENIs to allow
space for further flag se tting should we want to do
this later.

1600 REM *SETFLG*
1610 REM SETS FLAGS AFTER *RDINFL*
1620 REM
1630 REM
1640 IF TESTS = "@FIRST" THEN LET SIZE = 0
1650 REM
1660 REM
1670 REM
1680 REM
1690 RETURN

'SETFLG* then RETURNS to *INITIL*, which in turn
R ETU RNs to the main program. ' MAIN PG' then calls
'GREETS', which displays the greeting message.
'GREETS' does not need any modification from the
previously published version of it.

The next routine called by the main program is
`CHOOSE*. A very small modification to the
'CHOOSE* subroutine on page 357 will establish a
way of forcing the user to add a record if the
program is being run for the first time.

3500 REM 'x CHCOSE^' SUBROUTINE
3510 REM

3520 IF TEST$ = "@FIRST" THEN GOSUB 3860
35 30 IF TEST$ _ "@FIRST" THEN RETURN
3540 REM 'CHMENU'
3550 PRINT CHRS(12)
3560 PRINT "SELECT ONE OF THE FOLLOWING
3570 PRINT
3580 PRINT
3590 PRINT
3600 PRINT "1. FIND RECORD (FROM NAME)"
3610 PRINT "2. FIND NAMES (FRCM INCOMPLETE..

NAME)"

3620 PRINT "3. FIND RECORDS (FROM TOWN)"

3630 PRINT '6. FIND RECORD (FROM INITIAL)"
3640 PRINT "5. LIST ALL RECORDS"
3650 PRINT "6. ADD NEW RECORD"
3660 PRINT "7. CHANeISRECORD"

3670 PRINT "8. DELETE RECORD"
3680 PRINT "9. EXIT 8 SAVE."
3690 PRINT
3700 PRINT
3710 REM 'INCHOI'
3720 REM
3730 LET L = 0

3740 LET I = 0
3750 FOR L = 0 TO 1
3760 PRINT "ENTER CHOICE (1 - 9)"
3770 FOR I = 1 TO 1
3780 LET A$ = INKEY$
3790 IF AS _ "" THEN I n 0
3800 NEXT I
3810 LET CHOI = VAL(A$)
3820 IF CHOI <1 THEN I. = 0 ELSE L = 1
3830 IF CHOI >9 THEN I. = 0
3840 NEXT L
3850 RETURN

Two lines have been added. The first tests TESTS.
This variable still contains the value read into it in
the *RDINFL* routine. If it is ©FIRST we know that
there is no valid data in the file and so the only
appropriate option is ADDREC, which is number 6.
If the test is passed, control is passed to'FIRSTM', a
routine that displays an appropriate message and
sets the CHOI variable to 6. When the subroutine
returns to line 3530, TESTS is tested again (it is

THE HOME COMPUTER COURSE 377

