
MBasic Programming

2. INPUT CHOICE

3.Call CHOICE subroutine

END

111 3 (CHOOSE )1 (PRINT menu)

BEGIN

1. Clea
,
 screen

2. PRINT menu and prompt

END

111 3 (CHOOSE) 2 (INPUT CHOICE)

BEGIN

1. INPUT CHOICE

2. Check that CHOICE is within range

END

111 3 (CHOOSE) 3 (cal CHOICE)

BEGIN

1. CASE OF CHOICE

ENDCASE

END

111-3-1 (PRINT menu) can now be coded into BASIC:

IV 3 (CHOOSE) 1 (PRINT menu) BASIC CODE

REM CLEAR SCREEN

PRINT CHR$(12): REM OR 'CLS'

PRINT

PRINT

PRINT

PRINT

PRINT "1. FIND RECORD (FROM NAME)"

PRINT "2 FIND RECORD (FROM INCOMPLETE

NAME)"

PRINT "3. FIND RECORD (FROM TOWN)"

PRINT "4. FIND RECORD (FROM INITIALS)'

PRINT "5. LIST ALL RECORDS"

PRINT "6. ADD NEW RECORD"

PRINT "7. CHANGE RECORD"

PRINT "8. DELETE RECORD"

PRINT "9. EXIT & SAVE"

111-3-2 (INPUT CHOICE) and 111-3-3 (call CHOICE),

however, need further refinement. Let's look first
at the next level of development of 111-3-2.

Assigning a numeric value to the variable
CHOICE is perfectly simple: after the prompt, an
INPUT CHOICE command will do this. However,
there are only nine possible choices. What would
happen if we mistakenly entered a 0, or 99? Since
the CHOICE we make will determine which part of
the program is called next, we want to be sure that
unwanted errors are not caused, so we need to
perform a `range checking' procedure. This is a
small routine that checks to see if the number input
is within the acceptable range before allowing the
program to continue. Here is a sample routine
designed to trap an erroneous input.

RANGE CHECKING ROUTINE

1 REM ROUTINE

10 LET L=O

20 FOR L=1 TO 1

30 INPUT "ENTER 1-9" CHOICE

40 IF CHOICE <1 THEN LETL=0

50 IF CHOICE >9 THEN LET L = 0

60 NEXT L

70 PRINT "CHOICE WAS ";CHOICE

80END

Many versions of BASIC can make this routine
simpler by including a Boolean operator in the test
like this:

10 LET [=0

20FORL=1TO1

30 INPUT "ENTER 1-9";CHOICE

40 IF CHOICE <1 OR CHOICE >9 THEN LET L = 0

50 NEXT L

60 PRINT "CHOICE WAS ";CHOICE

70END

These routines also illustrate another point about
the INPUT statement. INPUT causes the program to
stop and wait for an input from the keyboard.
BASIC does not know when the whole number has
been entered until the RETURN key has been
pressed, so you will also have to remember to press
RETURN after entering the number.

A more `user friendly' approach would, be to
have the program continue as soon as a valid
number had been entered. This is possible using
the IN KEYS function. Here, BASic reads a character
from the keyboard whenever INKEYS is
encountered. The program does not stop,
however, and will proceed to the next part of the
program without pausing. It is usual, therefore, for
INKEYS to be used within loops. The loop to check
for a key being pressed can be I F IN KEYS = ""

THEN... — in other words, if the ke y being pressed
is `nothing' (that is, no key is being pressed), go
back and check again. A suitable loop for our
purposes would be:

LET 1=0

FORT=1TO1

LET AS= INKEYS

IF AS = '"THEN LET I = O

NEXT

The only disadvantage of using INKEYS is that it
returns a character from the keyboard, rather than
a numeric. When there is a CASE OF construct,
where one out of several choices are made (a
multi-conditional branch), it is easier in BASIC to
use numbers rather than characters. This is where
BASIC'S NUM or VAL functions come in. They
convert numbers in character strings into `real'
numbers (that is, numeric values, not ASCII codes
representing numerals). They are used like this:

LET N = VAL(AS) or LET N = NJM(AS)

By using the NU M or VAL functions, we can have the
program convert inputs, using INKEYS, into
numeric variables. This removes the need to use
the RETURN key after the number key has been
pressed, Out-of-range checking is still advisable,
however.

The following program fragment involves two
loops, one nested within the other. The inner loop
waits for a key to be pressed; the outer loop
converts the string to a number and checks that it is
within range:

294 THE HOME COMPUTER COURSE


