
OF I

PROGRAMMINGPROJECTS/ADVENTURE GAME

TAKING ORDERS

Up to this point in our adventure game
programming project, we have discussed
methods of map making, formatting output
and moving around the adventure world. In
this instalment, we show how the program
analyses and obeys instructions given to it by
the player.

ENTRY

Describe current
location and exits

Input Instruction

Split command

Invalid
command

I

Identify command
and execute

Y Unrecognised
verb (VF -0

? 	

error message

ne^
e to

Mov
v location

Adventures are usually constructed so that the
player can move from location to location, picking
up and dropping objects along the way. A set of
commands allows the player to perform these
simple tasks. The commands we have used are:

GO (direction) 	To move between locations

TAKE (object) 	To pick up an object

DROP (object) To put down an object

LIST 	To list the objects carried

LOOK 	To redisplay the description of the
current location

END 	To end the game

Variations on these may also be available, such as
MOVE instead of GO, or GET instead of TAKE. Part of
the fun of playing an adventure game is to
determine what words the game will accept. For
example, a player might try the command SWIM
when in a dry location. If the program responds by
telling the player that he cannot swim here, then
the player could reasonably assume that there
are locations where swimming is allowed.
(Alternatively, the programmer might just want
the player to think that!)

The number of commands accepted by a game
varies according to the complexity of the game and
the amount of effort the programmer has made to
cover every eventuality. The most important thing
for the designer to do is to make sure the program
does not crash if a player tries to enter a command
that is not catered for. A failsafe routine that prints
'I don't understand' may be all that's required,
bearing in mind that some flexibility should be
added so that players can enter commands in
different ways. For example, it would be annoying
for a program that accepts the command TAKE
LAMP to respond tothe command TAKE THE LAMP
with '1 don't understand'. Adding flexibility will be
discussed at greater length later. For the moment,
we need to look at the type of instructions that
might be given during the game, and devise a
routine that will break these down into a form that
can be easily interpreted.

COMMAND SPLITTING
No matter what the instruction is, it is very likely
that it will be phrased in the imperative - such as,
GO SOUTH TOWARDS THE RIVER or KILL THE ALIEN.
The advantage of this sentence structure is that it is
easy to break down: the verb always comes as the
first word in the sentence, the object of the verb
follows this, and finally there may be some form of
qualification of the action. A first stage in the
analysis of a command is to separate the verb from

Chequered Flags
Flags are used widely in
programs that have a modular
construction. Conditions that
involve branches in program
control can be tested for
within a module but branching
on the result of such a test can
be delayed until a return to the
main program section is
made. By setting a variable to
a pre-determined value when
the test is made, the value of
the variable can later be tested
within the main program
section. Variables used to
indicate conditions in this way
are termed 'flags'. The
flowchart shows the main
program loop, as constructed
solar, for Haunted Forest. The
flag F indicates whether or not
a command has a valid format
and is set during the 'split
command' subroutine. The
subroutine used to identify
and execute normal
commands uses two flags: VF
is used to signal that the verb
part of the command has been
correctly recognised. If, in
executing a command, the
player moves to a new
location, the fact that a move
is to be made is signalled by
MF. When MF is tested within
the main program loop, a
value of 1 indicates that the
loop should branch back to
describe the new location to
which the player has moved

826 THE HOME COMPUTER ADVANCED COURSE

