
I BETWEEN THE LINES

Don't forget to number your
program lines in mvMples of
ten. Even the best
programmers have to make
insert iaes into their p rograms
from time to time....

PROGRAMMNG PROJECTS/BBC BASIC

THE ABC OF BBC

We continue our appraisal of the built-in
BASIC of the most popular home computers
by looking at BBC BASIC. This dialect is as
full of fascinating abilities and facili ties as
the machine itself; and just as the BBC
Micro marked a new phase in the design of
home computers, so BBC BASIC is
considered amongst the best of the dialects.

The criticism most often made of BASIC is that it is
an unstructured language that encourages (or at
least does nothing to check) bad programming
habits in the beginner, especially the `quick and
dirty' approach to problem solving, which leads,
for example, to undisciplined use of GOTO.

The use of ELSE with the IF. THEN statement can
eliminate the commonest use of GOTO, by
permitting both true and false cases of a condition
to be dealt with in the same statement. For
example, these lines:

1500 IF TEST >0 THEN GOTO 1800
1600 PRINT `VALUE OUT OF RANGE'
1700 GOTO 1900
1800 PRINT NO PROBLEM"
1900 NEXT L

can be replaced by:

1500 IF TEST>O THEN PRINT NO PROBLEM"
ELSE PRINT "VALUE OUT OF RANGE"

1900 NEXT L

GOSUB usually takes a line number as its
argument, which has two disadvantages — first,
GOSUB 1000, for example, gives no clue as to the
purpose of the subroutine at line 1000; and
second, specifying line numbers makes the
program very difficult to renumber or merge.

GOSUB, like GOTO, is relatively slow in
execution because the specified line has to be
searched for in the program every time the
instruction is obeyed.

BBC sasrc's functions and procedu res answer
these objections. Both are subroutine-like blocks
of code, but are called by name rather than line
number, so they can be self-documenting, or at
least meaningful in the list, and need not be
affected by subsequent renumbering or merging.
Furthermore, function and procedure calls are
generally executed more quickly than the GOSUB
and GOTO commands.

Procedures and functions begin with DEF PROC
or DEF FN, followed by a name, and usuall y (but
not necessarily) a parameter list. For example:

1200 DEF FNcaIc(a,b,c)=(a -b) * c/100 and

2500 DEF PROC^perate(,xS,yS,z)

The definition will use these parameters as if they
were program variables. When the program calls
the function or procedure , however, the
parameters, or dummy va riables, may be
replaced by any variable number or literal
expression of the same data type as the original
parameter. For example:

250 result=FNcalc (price,cost,12)or
545 PROCoperate (6, names$, "smith",array(12))

The values of the parameters are then used in
place of the dummy va riables in the definition.
Notice that a function can be used in an
expression as if it were a variable or arithmetic
quantity, whereas a procedure call must be used
as if it were a BASIC command. The LOCAL
command, which defines va riables for use
exclusively inside the definition block, removes
the chance of a common subroutine bug. For
example, consider this code:

100 FOR K=1 TO 10:GOSUB 500:NEXT K:END
500 FOR K=1 TO 5:PRINT"**` * ":NEXT:RETURN

Here the variable K is used as the loop counter in
the main program line 100, and again in the
subroutine in line 500 — an oversight that will
seriously affect execution, but which can be
extremely difficult to avoid (or to trace in a long
program). In a BBC procedure, however, this
danger is avoidable:

100 FOR K=1 TO 10:PROCstars:NEXT:END
500 DEF PROCstars
520 LOCAL K
540 FOR K=1 TO 5:PRINT"**** :NEXT
560 ENDPROC

The LOCAL command means that between lines
500 and 560 the variable K is a new variable,
independent of the variable K anywhere else in
the program, and having no effect on the value of
K elsewhere. (Notice that PROCstars is a procedure
without parameters.)

REPEAT..UNTIL is a loop structure in which
iteration continues until the conditional
expression that follows the word UNTIL is true;
control then passes to the statement after UNTIL.

For example:

200 DATA 12,234,31,45,65,0,76,81
250 REPEAT

300 READ numuer:sum=sum+number
350 UNTIL number
400 PRINT "Sum is ';sum

54 THE HOME COMPUTER ADVANCED COURSE

