FIELD WORK

Our 6809 machine code course has so far
taken a close look at the operation of the
registers in storing and moving data. We
now consider the layout of Assembly
language programs in more detail, inspect
some new assembler directives and discuss
addressing modes.

As it is entered into an assembler, an Assembly
language statement consists of three parts —
although not all of these need be present for each
statement. The three parts or fields are:

® The Label Field, which is found in the leftmost
column of the screen display. Labels are simply
identifiers representing numbers, which are
usually memory addresses. A label consists of
from one to six alphanumeric characters: the first
character must be alphabetic, and the name as a
whole must not be the same as a register name, an
Assembly language op-code or an already-
defined label. These are the usual assembler
conventions, but they are only conventions —
different assembler programs may follow different
rules. If you do not wish to label a line, then you
should start it with at least one space character,
indicating an empty label field. Similarly, a space
terminates the label field; LABLDA, for example, is a
valid label, whereas LAB LDA is interpreted as the
label LAB followed by LDA, the op-code.

The assembler maintains a location counter,
which is the equivalent of the processor’s program
counter register. It holds the address of the
memory location where the next byte of
instruction or data is to be stored. When the
assembler first encounters a label, it saves the
identifier in an area of memory called the symbol
table — this is like an array in a BASIC program.
Along with the identifier it stores the address held
in the location counter at the point when the label
was first encountered. Whenever the assembler
encounters a label in the Assembly language
program, it inspects the symbol table for that label.
Ifitis in the table then the assembler replaces it by
the address given for it, and if it is not in the table
then the assembler stores it there along with the
location counter contents.

® The Operator, Instruction or Op-code Field is
found to the right of the Label Field. This is a
mnemonic, usually consisting of three characters,
and — if necessary — a register name. Thus, ADDA
is formed from the mnemonic ADD and the register
name A. The op-code represents the processor
operation to be executed. Like the label field, it is
terminated by space.

558 THE HOME COMPUTER ADVANCED COURSE

® The Operand or Address Field, which gives
information about the data on which the op-code
is to operate. Normally this data isin the form of an
address, or more often, a label representing an
address.

Consider this Assembly language statement:

LABEL1 ADDA NUM1

meaning ‘add the data stored at the address
represented by the symbol NUM1 into accumulator
A’ The address of this instruction is now stored as
LABEL1; if we wish to jump or branch to this
statement, then we use its label to indicate the
jump destination. NUM1 is a label that is defined
elsewhere in the program, and represents an
address where data is stored. Now let’s consider
another example:

CLRA

meaning ‘ClLeaR accumulator A — i.e. set its
contents to zero’. This is an example of an op-code
that needs no operand. Notice that we have not
labelled this line. Labels are entirely optional —
you should use them because the line will be
branched to by some other instruction, or as akind
of REM statement, labelling significant lines with
explanatory remarks.

Using labels in this second way is helpful, but it
is no substitute for full explanatory comments.
These can be added to any line by leaving a space
after the last character of the operand, and then
inserting your comment. Some assemblers may
require a special character to indicate the
beginning of a comment, and it is normal to start a
whole new line of comment this way, usually with
an asterisk.

Constants, in the form of numbers or character
strings, can be used in the operand field. Numbers
are usually taken as being in decimal, unless
indicated as hexadecimal by a $ prefix or an H
suffix (e.g. SAF08, AF08H); or octal (number base
eight) by a @ prefix or a Q suffix (e.g. @6712,
6712Q); or binary by a % prefix or a B suffix (e.g.
%11010011, 11010011B). The ASCII code of a
character can be used as an operand by prefixing it
with an apostrophe, thus ‘A, meaning 65 or $41.

A particularly useful value is the current
location counter contents. This is not usually
known to you when you enter the program, but
can be referred to in the operand field by an
asterisk. Most assemblers will accept this in simple
arithmetic expressions — usually restricted to
arithmetic and subtraction. For example:

LDA "+5

hanndl

