
L

Leaky Roof
The illustration shows a
computer-generated design in
three stages that is being filled
with colour. A deliberate error
in the drawing routine allows a
hole to be left in the shape to
be filled. When the program
reaches the outline of the roof
and fails to encounter a
boundary, the cursor continues

drawing outside the outline.
Depending on the fill algorithm
used, this could result in
ha

y
ing the entire screen filled

in with colour

L

a program to run normally, but invalidates the
results. As an example, we have chosen to look at
a fill pattern that draws a shape on the screen, then
fills it with colour. Fill routines look for the
boundaries of the shape. When a boundary is
reached, the computer turns the cursor around
and continues drawing until it reaches another
boundary. For a fill routine to work, the
boundaries must be well-defined and complete. In
other words, there cannot be an open space in the
shape's outline or the fill routine will spill the
colour out beyond the boundaries.

The versions of the BASIC language used by most
home micros make error-handling relatively
easy, producing clear and concise error messages
and allowing a crashed program to be continued
after variable values have been altered at the
keyboard — a useful facility when a program is
being debugged. Most BASIC dialects will allow the
use of a command such as ON ERROR GOTO to
transfer the flow of control to a special error-
handling routine and thus deal with otherwise
'fatal' bugs. This is done by including a program
line such as:

30 ON ERROR GOTO 20000 REM error-handling
routines

near the start of the program. Any error will then
cause the program to act as though the GOTO 20000
command had been encountered. ON ERROR will
usually also set two variables; the first of these
stores an error number that indicates the type of
error that has occurred, and the other simply holds
the line number at which the mistake was
encountered. The names given to these variables
and the resulting error numbers will vary from
machine to machine, so the manual must be

consulted. Once an error has occurred, program
flow is diverted to line 20000, the error is
identified from the number held in the relevant
variable and the appropriate action is taken.

A well-written program will not have more
than one ON ERROR routine. Such a routine will not
be able to deal with syntax errors, memory
shortages, stack overflows, etc. The best that this
facility can offer is an orderly shutdown of the
system, ensuring that all files are CLOSEd and that
the user knows exactly what has happened.

Some errors, such as a division by zero, which
could be handled by such a routine, should in fact
be dealt with in a different manner. There are
several reasons for this:
•The ON ERROR GOTO command and the
subsequent jump back to the main program
constitute an extra entry to and exit from a
routine. This violates the structured programming
principle that routines should have only one entry
and one exit point.
•The proper place to protect against a division by
zero is in the routine that does the division. It is bad
practice to design algorithms that may crash the
system. If the extra error-checking involved slows
the program to an unacceptable degree, the
routine should be redesigned so that this hazard
doesn't arise.
•Error-handling routines rapidly become
complicated IF.. THEN... ELSE chains with
multiple exits. They are inevitably restricted by the
line numbering of the rest of the program and so
must be rewritten whenever any routine using
them is redesigned. They are particularly difficult
to design, test and debug, and any mistake in such
a routine can introduce far-reaching problems by
diverting the flow of control in unforeseen ways.

THE HOME COMPUTER ADVANCED COURSE 485


