
I
FIACHINE CODE/6809 CODE

Vital though indirect addressing
is to computer operations, it is
difficult to find examples of the
technique in real life. A
reasonable analogy, however, is
a radio paging service. When
someone wants to talk to a
subscriber, he doesn't call them
directly, because they could be
anywhere. Instead, he calls the
paging service, who then page
the subscriber. This is a simple,
flexible system in which the
paging service provides indirect
accessing (or addressing) of its
subscribers

character on the screen. Most machine code
programs will need to use these routines at some
time. In most cases, these routines will be accessed by
using a jump table, which means that routines
pointed to by the jump table vectors may be changed,
or relocated in memory, without changes being
needed in the programs that use them. In other
words, such routines are always accessed indirectly,
through the appropriate pointers in the jump table.
When a new version of an operating system is
designed, or an updated ROM produced, it is rare for
these primitive OS routines to remain in their original
positions; but if the jump table remains in position,
with its pointers altered so that they reflect the new
OS routine addresses, any software written for the
old operating system that uses the jump table will run
unchanged on the new system.

A common technique used in many operating
systems is to have one entry point and to make all
subroutine calls to this one address. One of the CPU
registers is used in addition to pass a function code
that is used to determine which subroutine will be
called. This function code is used as an index or offset
into the appropriate vector of the jump table, and
control is transferred through this pointer to the
desired routine.

As an example, let us suppose that we have four
Kbytes of ROM, located at $ F000, the first 256 bytes
of which ($F000 to $ FOFF) contain a table of up to 128
addresses of subroutines stored in the ROM. The
entry routine (the address by which all the OS
routines are addressed) is located at $F100, and this
expects a function code in the range 0 to 127 to be

stored in accumulator B; this code is used by the entry
routine to pass control to the appropriate subroutines
and thence back to the calling program once
execution is complete. The calling routine for
function number 1 is:

LDB #1 put the function code in B
JSR SF100 call the entry subroutine

The entry routine itself is:

LOX SF000 start address of the jump table
LS113 shift B one place to the left (equivalent to multiplying

the contents of B by two) since each entry in the table is
two bytes long. Thus the pointer appropriate to function
code 1 is stored at SF002 and SF003, while the pointer
for code 2 is at SF004 and $F005, and so on

BRA [B,X] transfer control to the address found at the Bth position
in the table

Note that the transfer to the routine is handled by a
BRA (or JMP) rather than a BSR (or JSR); this is so that
the RTS at the end of the OS routine will return
control directly to the calling program instead of back
to this entry routine.

Our next example shows a further possible use of
indirect addressing in dealing with a memory-
mapped display screen; on many micros the screen
memory occupies a block of the main memory and
may be accessed directly if extra speed is required.
For simplicity, let us assume that the screen occupies
a block of memory from $E000 to $E3FF, representing
16 lines of 64 characters. The position of the cursor is
a 16-bit value in this range, and is located at SE400.
The first subroutine clears the screen by writing a
space character (ASCII code 32) at each character
position. The second subroutine will write the

638 THE HOME COMPUTER ADVANCED COURSE

