
SWORD PLAY

The list processing facilities of Loco make it
ideal for a variety of games applications.
Here, we show you how the language can be
used in the development of a text-based
adventure game. We approach the
implementation in a general way, to allow
you to build up your own game by defining
the locations, objects and perils yourself.

In this article, we'll restrict ourselves to looking at
the more general aspects of programming an
adventure game and deal with the specific details
for a particular game in the next instalment.

In all adventure games there are five basic
activities that the player should be able to
perform: you need to pick up objects or drop
them, to list the things you are carrying, to look at
your surroundings and to move about the game
from room to room (or location to location). So it
is these basic commands that we will program first
of all. For simplicity, we will restrict the form of the
commands to one of two types: either single words
(such as LOOK) or verb-noun pairs (such as DROP
RING). The program will maintain two lists: one
called INVENTORY, which will be a list of everything
the player is currently carrying, and the other,
called simply CONTENTS, will be a list of the objects
in the current room.

The first command we will define is INVENTORY:

TO INV

PRINT [YOU ARE CARRYING:]

IF EMPTY? :INVENTORY THEN PRINT [NOTHING]

ELSE PRINT :INVENTORY

END

Notice that this procedure uses the full form of the
IF statement: IF <condition , THEN <actionl ELSE
<action2). The command for picking up an object
will be GET:

TO GET :ITEM

IF MEMBER? :ITEM :CONTENTS

THEN GETIT :ITEM ELSE PRINT [I

CAN'T ITS NOT HERE]

END

MEMBER? is a primitive that tests to see if an
element belongs to a list. To `get' an item we need
to do two things: add it to the inventory and
remove it from the list of contents. These are the
procedures that do these tasks:

TO GETIT :ITEM

ADD.TO .I NV :ITEM

REMOVE.FROM.ROOM :ITEM

END

TO ADD.TO.INV :ITEM

MAKE "INVENTORY SENTENCE :ITEM

:I NVENTORY

END

TO REMOVE.FROM.ROOM :I TEM

MAKE "CONTENTS DELETE :ITEM

:CONTENTS

END

The last of these procedures involves deleting an
element from a list — which was one of the
exercises given in the previous instalment.

TO DELETE :ITU,' :LIST

IF :ITEM = FIRST :LIST THEN OUTPUT BUTFIRST

:LIST

OUTPUT SENTENCE FIRST LIST DELETE :ITEM

BUTFIRST :LIST

END

The command for dropping an object is
implemented in a similar way:

TO DROP :ITEM

IF MEMBER? :ITEM :I NVENTORY THEN DROPIT

:I TEM ELSE PRINT [YOU DON'T HAVE IT TO

DROP!]

END

TO DROPIT ITEM

REMOVE.FROM.INV :ITEM

ADD.TO .ROOM ITEM

END

TO REMOVE.FROM.INV :ITEM

MAKE "INVENTORY DELETE :ITEM :INVENTORY

END

TO ADD.TO .ROOM :ITEM

MAKE -CONTENTS FPUT :ITEM •CONTENTS

END

Having entered all the procedures we have given
so far, it is now time to test their operation. First of
all, we must define the two global variables —
INVENTORY and CONTENTS — and then test for the
following commands:

MAKE "CONTENTS [SWORD SPEAR TORCH]

MAKE "INVENTORY [LANTERN]

GET "SWORD

DROP 'LANTERN

Now examine CONTENTS and INVENTORY using
these statements:

PRINT :CONTENTS

PRINT :I NVENTORY

and check that they are correct.
Notice that we used quotation marks before the

774 THE HOME COMPUTER ADVANCED COURSE

http://ADD.TO
http://ADD.TO

