
Adjusting The Wheelbase
Before we start the calibration process it may be necessary to
perform some preliminary adjustments. With the robot on its
back, it is first important to locate the central axis about which
the robot will turn. This can be done using the measurements
shown. Mark the central axis with a small scratch or an indelible
marker pen. Measure the distance between the insides of the
two driving wheels. This distance should be between 140 and
150mm. It is important, if the robot is to pivot accurately about
its central axis, that each wheel is equidistant from the central
axis point we have just marked. The wheels maybe slid gently
.,Innn Ihn' ,s,I 	,,nKI th. 	.,.krn,nd

WHEELBASE 140-150mm

- WORKSHOP BUILDING A RO

10 REM *4I* BBC BUMPERS ****
2e DDR-&FE62 DATREG-&FE6O
30 'DDR-lS:REM LINES 8-3 OUTPUT
40 forwards-4 :backwards-2
58 ?DATREO(?OATREG OR I) OR forwards
'a REM **** PULSE FORWARDS ****
65 count
78 REPEAT:PROCpuIs. ,countcount+1
$0 LRTIL(?OATREG AND 192)<>192
90 REM **** GO BACK TO START ****
95 ?DATRE(?DATREG AND I)OR backwards
180 FOR I1 TO count
118 PROCpu Is.
128 NEXT I
I 30 'DATREG8 :END

1800 DEF PROCpuIs,
1818 ?DATREG(?DATREG OR 8)
1828 ?DATREG(?OATREG AND 247)
1838 ENDPROC

Now that we have added microswitch sensors to
our robot, we can write software that uses output
through the user port to control the robot, and
input to monitor external activities via the robot's
sensors. The following simple program sends the
robot forwards until an obstacle is encountered,

whereupon the robot retreats to its exact starting
position. The logic of the program can be
described as follows:
1. Set the data direction register to 15. This sets

bits 0-3 for output and bits 4-7 for input.
2. Set the motor direction to forwards.
3. Pulse the motors until bit 6 or bit 7 goes low,

keeping a count of the number of pulses made.
4. Set the motor direction to backwards.
5. Pulse the motors' 'count' times.
6. Set the data register to zero and finish.
In this program we have designated the forward
microswitch pair as the pair furthest away from the
patch sockets on the robot's lid and have
connected these two microswitches to bits 6 and 7,
using two patch cords between the two rightmost
red and blue socket pairs on the lid. In future we
shall always assume that the D plug is further
forward than the patch socket system. If, when you
run this program, you find that your robot appears
to go backwards first (according to this
convention) then simply take off the lid and
replace it the other way round.

Of the four low data register bits that control the
motor operation, bit 0 is the rest bit (normally set
to one), bits 2 and 3 are the direction controllers
for the right- and left-hand motors, and bit 3
pulses both motors simultaneously, causing them
to turn through one step as bit 3 undergoes a low-
to-high transition. Using the logical operators AND
and OR allows individual bits to be turned on and
off without affecting the other bits in the register.
As the upper four bits have been set by the data
direction register to be inputs, they are normally
held high. When a microswitch closes, the
corresponding bit in the data register goes low.
Normally bits 6 and 7 would have the value 192
(128+64) if set for input. The repeating loop that
sends the robot forwards at lines 70-80 is
terminated on the condition that these two bits no
longer have a value of 192. This can happen if
either microswitch is closed (or if both are). If a
count is kept of the number of pulses made to the
motors in the intervening period, then the robot
can accurately retreat to its starting point by
altering the motor direction bits and pulsing the
motors the .,ppropriate number of times. The 75
step of the motors translates to a movement of less
than one millimetre by the wheel - thus we can
control the position of the robot very simply.

Finally, it is interesting to note that the robot
moves forwards more slowly than it does when
retracing its steps. Here we are limited by the speed
of BASIC. The time between pulses in the loop that
sends the robot forwards is longer than that for
when the robot is retreating as additional work,
such as keeping the count and testing for the
collision, has to be done in the first loop but not in
the second.

We now take a short break from the robot
project to allow you to complete assembly of the
robot. In the next two instalments we shall be
taking a look at the control of servo motors.

896 THE HOME COMPUTER ADVANCED COURSE

