
When you run this program, you may type in any
algebraic expression with variable X (2*X+3/X,
for example), and you will see a crude block graph
of that function on the screen. In this program, the
y-axis is horizontal, the x-axis vertical, and
graphics are pixel-size. It would not require much
more code to establish the range of values of x and
y immediately after the function of x was input,
and then make scaling adjustments, print axes and
create high resolution graphics. The result would
be a very impressive graphics package; the
fragment above, however, is simply designed to
make clear the usefulness of VA L's power to accept
expressions as its argument.

Just like VAL, in this respect, are GOSUB and
GOTO. They too evaluate expressions in situations
where most BASIC dialects would require that their
arguments be valid line numbers. This has several
advantages. You can give your subroutines names,
for example, define variables with the same names
and appropriate values, and then GOSUB to the
subroutines by name. Here is an example of this
ability:

100 LETINIT=1000
200 LET OUTPUT=2000
300 LET CALCULATE=3000
400 GOSUB INIT
500 GOSUB CALCULATE
600 GOSUB OUTPUT
700 STOP
1000 REM""""INIT S/R" ****'

2000 REM** **OUTPUT S!R"******

3000 REM""CALCULATE S/R'***'*

which almost makes your program self-
documenting. If you replace GOSUB INITby GOSUB
(VAR1+N'VAR2), or any valid numerical
expression, the expression will be evaluated and
the result treated as a line number. Furthermore, in
Sinclair BASIC, if the argument of GOTO or GOSUB is
a line number that does not exist, then control
passes to the next valid line number, If you write,
for example, GOTO 17 and line 17 does not exist but
line 18 does, then control will pass to line 18 and
no error will result — as it does in most BASICS.

The ability of Sinclair BASIC to handle these
`computed jumps' makes up for the lack of the
ON ... GOTO and ON ... GOSUB structures. In
another BASIC you might write:

2360 ON D GOSUB 100,200.300 400,500

meaning that if the value of D is 1 then the program
will jump to line 100 (G OS U B 100), if D=2 then it will
jump to line 200 (GOSUB 200), and so on. In

0 PROGRAMMING PROJECTS /SPECTRUM BASIC PART 2

FUNCTIONS AND
CONTROL STRUCTURE
In the first part of our appraisal of the
Sinclair version of the sic language, we
dealt with Sinclair's idiosyncratic approach
to variable names and string-handling. Here
we conclude our look at the dialect by
considering the VAL, GOSUB and GOTO
functions, and the control structures
WHILE...WEND and REPEAT.. .UNTIL.

You may already have noticed that some functions
in Sinclair BASIC do not require brackets around
their arguments, unlike their counterparts in other
BASICS, so that LEN (XS) can be written as either LEN
X$ or LEN (X$). You should, however, use brackets
if the meaning of an expression is doubtful or
ambiguous.

The function CODE is the Sinclair equivalent of
ASCO, and behaves in exactly the same way. The
Sinclair character set, however, is standard ASCII
only for values 32 to 122. So, for example, where
PRINT CHRS(7) in most BASICS causes a `beep' of
some kind to be sounded, in Sinclair BASIC it causes
an error message.

The function VAL is standard BASIC, but in
Sinclair BASIC a statement such as VAL(`a45") would
cause the program to crash because the argument
of the function is non-numeric. In most other
BASICS this would simply return the value zero. If
this particular quirk is likely to be a problem you
may have to write a subroutine to replace the VAL
function, or you may have to test the CODE value of
the first character of the argument of VAL: if CODE
A$(1) <48 or CODE AS(1) >57 then AS is non-
numeric and should not be the argument of the
function VAL.

Sinclair VAL has the unusual power, however, of
evaluating numeric expressions, so that:

LET AS="6'12":PRINT VAL AS

will result in 72, the value of the expression `6* 12'.
In most BASICS, VAL is not as powerful as this, and
would return the value 6 in this case.

This ability to evaluate expressions can be put to
use in many ways. A simple example is this block
graph drawing program:

100 DIM SS(31
200 LET SS=: .:................x...........,

300 INPUT "ENTER A FUNCTION OF X";F$
400 PRINT "Y = ";FS:PRINT
500 FOR X=1 TO 10
600 PRINT SS(TO INT(VAL F$))
700 NEXT X
800
900 PRINT "000000000111111111122222222223"
950 PRINT 123456789012345678901234567890"

24 THE HOME COMPUTER ADVANCED COURSE

