
$1003
$1004
$1005
$1006
$1007
$1008
$100'?

770
??0
?-40
??0

?AO

RMB reserves 7 bytes
(contents undefined) by
incrementing the location
counter by that number

$1004
$100B
$1000
$100D
$100E

$40— The ASCII codes of the
$50— operand string are placed in
$53-- memory by the FCC directive
$4e

-

$52,—

Original Directives
LABELOP-CODE OPERANDLOCATION
FIELDFIELDFIELDCOMER

 - - - - - - - - - - - DEMONSTRATION - - -
RESETEQU$F100
INDEXEQU16
MASK1EQU%01101010

MEMORY
CONTENTS

C)
—

 No ORG has been issued, so
??0-- the location address is the
??0-- assembler's default setting.

Note that location address is
not affected by EQU, and the
contents of memory are as yet
undefined

$0400
$0400
$0400

ORG$1000$1000? . 0-- This sets the location as
specified, but memory
contents remain undefined

CRFOB16$1000 $111-- FCB causes the operand to be
stored in the byte addressed
by the location counter

TABLE! RMB7

ERRMSG FCC'ERROR

CL RA

END

 - - - - - -SYMBOL TABLE - - - - - - - -
RESET F100 INDEX 0010 MASK1 006
CR1000 MEMTOP 1001 TABLE1 100
ERRMSG 1004

This is how the symbols used
in the program would be
stored in the assembler's
workspace for its own
reference during the
Assembly

6809 CODE/MACHINE CODE

do this at the point where the required value
appears, since it is difficult to ensure that the flags
are not changed by any intervening instructions.

The flags are tested by means of 'branch'
instructions, which are the low-level equivalent of
the BASIC GOTO command. The 6809 uses relative
(rather than absolute) branches almost
exclusively. The difference is that a relative branch
transfers control by so many bytes forward (or
back), while an absolute branch transfers control
to a specified address. The effect, however, is the
same. It distinguishes between short branches,
where the range is expressed in a single byte
(-128 to 127), and long branches, which can go
anywhere in memory. We will be using short
branches only.

The 6809 has a large set of branch instructions,
and we will introduce these as we need them. The
following examples illustrate the instructions used
to test and compare the values held in the
accumulators and the use of the branch
instructions to select and repeat procedures.

•AN DCC: It is not possible to load values directly
into the condition code register, but it is good
practice to set all the flags you need to zero before
you start using them. The easiest way of doing this
is by using the AN DCC instruction, which operates
just like an AND command, using zeros as masks in
the bit positions we want to use.

•SUB (SU Btract): The operand is subtracted from
the accumulator, which sets the C, V, Z and N flags
on the result. (The H flag is also set if the
subtraction is eight-bit).

•CM P (CoM Pare): This works in exactly the same
way as SUB, except that the contents of the register
are left unchanged. As in SUB, the C, V, Z, N (and
possibly H) flags are set.

•BRA (the unconditional BRAnch): This is just like
the BASIC GOTO command.

•BGT (Branch if Greater Than zero): This is a test
for the signed numbers. The branch takes place if Z
is zero (the number is non-zero). To allow for the
fact that the sign bit may be incorrectly set if
overflow has occurred, either N must be zero and V
also zero (straighforward non-negative) or N must
be one and V also one (incorrectly negative due to
overflow). Other similar tests for signed numbers
are BGE, BLT and BLE.

•BLO (Branch if LOwer than zero): This is an
unsigned test, since it is pointless inspecting N with
unsigned numbers. The branch occurs if the C flag
is set, indicating a borrow after a subtraction.
Similar unsigned tests are BLS, BH I and BHS.

•A program to find the larger of two signed eight-
bit numbers stored in $3000 and $3001. The larger
of the two numbers to be placed in $3002. First
label the numbers:

NUM1EQU$3000

NUM2EQU$3001

ANSEQU$3002
0 RG$1000

•The code begins: the condition code flags are set
to zero and the first number is loaded. This is
compared with the other number:

ANDCC#%11110000
L DANUM1
CMPANUM2

•If NU M1 is the larger, then the program branches
to FINISH. Otherwise it loads the second number
into the A register. Whichever number is in the
register when FINISH is reached is then stored in
ANS, and the program returns to the operating
system and EN Ds:

BGTFINISLI

L DANUM2

FINISHSTAANS

SW I

END

Original DireCtives
The differing effects that
assembler directives and
Assembly language statements
have on the assembler's
location counter and on the
contents of memory can be seen
in this example

THE HOME COMPUTER ADVANCED COURSE 579

