
START

Switch off
sprites

Yesci

milm.
STOP

yer'sen Yescurr

No

	

	 Set new
hi score

Tir

Reset score
to zero

Reset depth
charges flag

Turn sprites
back on

tl] itTO
main loo

3:4j1 PROGRAMMING PROJECTS/COMMODORE 64 GRAPHICS

RUN SILENT RUN DEEP
At last we can apply the finishing touches to
our Subhunter game. We set up the routines
that create an explosion when a depth
charge hits a submarine, and explain the end
of game procedure.

In the penultimate instalment of the course, we
discovered how easy it is to detect collisions
between sprites using a sprite collision register,
V+30. When this happens, the Hit subroutine
(starting at line 5000) has three tasks to perform.
First of all, it must cause an explosion at the point
on the screen where the two sprites collided, and
then it must increase the player's score by the value
of the sub, which is calculated from its speed (DX)
and its depth (Y3). Finally, it must reset the co-
ordinates for the next sub to start moving across
the screen. Let's look at the code for the Hit
subroutine (lines 5000-5250) in more detail.

Line 5010 PO K Es a zero into the collision register
V+30 to clear it. Commodore claims the sprite
collision register clears itself once two sprites have
passed over each other and are no longer in
collision. Experience, however, shows that the
register does not always clear itself quickly
enough, causing unexpected effects such as
explosions occurring for no reason. The solution is
to clear the collision register manually after a
collision. Once this has been done the explosion
sprite can be positioned and turned on.

Line 5030 gives the explosion an X co-ordinate
ten pixels to the right of that of the depth charge.
This slight shift positions the explosion more
centrally over the depth charges. As X2 takes its
value from the ship's X co-ordinate (XO), its value
has an upper limit of 245. This means that the
maximum value of the explosion's X co-ordinate is
255. The Y co-ordinate for the explosion is taken
directly from that of the submarine.

The explosion sprite has been designated as
sprite 1. Line 5040 sets bit 1 of the register V+21 to
one, turning on sprite 1 without disturbing the
values of other bits within the register. At this point
it is interesting to note that the explosion sprite will
appear on top, or in front of, the sub and depth
charge sprites. This is known as sprite priority, and
it is governed by the simple rule that lower
numbered sprites appear in front of higher
numbered ones. It is no accident that the explosion
was designated as sprite 1 and the depth charges
and sub were designated 2 and 3 respectively.

The colour of the explosion sprite is controlled
by location V+40 of the VIC chip. An interesting
effect can be obtained by rapidly changing the
colour of the explosion using a FOR.. . N EXT loop to
POKE in colour code numbers between 1 and 15.

An outer FOR ... NEXT loop repeats this process 20
times (lines 5060-5100). When the explosion is
complete, all three sprites (explosion, depth
charges and submarine) must disappear from the
screen. Line 5130 turns sprites 1, 2 and 3 off.

As mentioned previously, the player's score
needs updating using the subroutine beginning at
line 5500. As the score is to be increased by the
sub's value (rather than decreased, as happens
when a sub reaches the right hand side of the
screen unscathed) the value of DS is set to one to
signal this. Finally, before another sub can travel
across the screen, its co-ordinates need to be reset
using the subroutine at 2500 and the sub sprite
must be turned back on. In addition, the flag that
signals the dropping of a depth charge must be
reset to zero so that the player can start firing depth
charges again.

At the end of three minutes the program leaves
the main loop and jumps to line 400. When we
first discussed the use of the Commodore 64 timer
(see page 234) line 400 was a simple END
statement. The End of Game routine allows the
game to be replayed and the highest scores
recorded. The flowchart shows the tasks to be
incorporated into such a routine. Lines 400 to 660
of the program listing perform these tasks. Most of
the code is self-explanatory, remembering that
CH RS (19) homes the cursor to the top left corner of
the screen and CH R (144) causes subsequent
PR I NTed letters to be coloured black.

In this short programming project for the
Commodore 64 we have learned how to construct
a simple animated game. In building up the
program we have covered all the main aspects of
programming this kind of game in BASIC. You may
well wish to add refinements of your own to the
program using the principles we have learned.
One way of extending the game to make it more
interesting would be to allow more activity on the
screen by incorporating the four unused sprites.

A Tat* Of The Variables Used In Subhunter

1V Start of the VIC chip registers

FL Depth charges flag - set to one if a charge is dropped

SC Current player's score

HS Highest score so far

TIS I Commodore 64's own timer

XO I X co-ordinate of ship

IX2,Y2 X and Y co-ordinates of depth charge

X3,Y3 X and Y co-ordinates of sub

IH3,L3 Hi byte and lo byte of sub's X co-ordinate

DX Number of pixels by which X co-ordinate of sub is increased

DS Flags whether a score is to be increased (DS-1) or decreased

(DS-1)

314 THE HOME COMPUTER ADVANCED COURSE

