
GETCH Routine
GETCHPSHS
REPTOOBSR

LDB
DECB

WHILOOBLT
CM PA
BEQ

DECB
BRA

ENDWOOTSTB
UNTLOO BLT

BSR
LEAS
RTS

Save B
Get Next Inchar
Set Chars-Searched
Subtract one from max offset
While Chars-Searched >-0
AND
Inchar <> Valid-Chars(Chars-
Searched)
Decrement Chars-Searched

Until Chars-Searched >-0
Display Inchar
Increment S to 'forget the
original value of B

INCH
1,S

END WOO
B,X
END WOO

WHILOO

REPTOO
OUTCH
1,S

Set-Up-Breakpoint Module
Data declarations

BPTABR MB32Breakpoint-Table

REMTABRMB16Removed-Values

NUMBPFCB0Number-Of-Breakpoints
NEXTBPFCB0Next-Breakpoint
SWIOPFCB$3FSWI-Opcode

MAXBPFCB16Maximum number of Breakpoints

Process2 — Set-Up-Breakpoint

8P02PSHSB,XSave the registers we will alter

LS LAMultiply the offset by two

LEAXBPTAB,PCRBase address of table

LDXA,XGet Address in Breakpoint-Table(N)

LDB.XGet Op-code at that address
LS RARestore A to original value
STBA,XStore Op-code in Removed-Values(N)
LDBSWIOP,PCRGet SWI-Opcode
STB,XStore it at the address

PULSB,X,PCRestore and return
End of Process2

range (one to Number-Of-Breakpoints — 1)

which we use as an offset into the two tables. Note,
however, that one table is of 16-bit values whereas
the other is of eight-bit values. We will assume that
N is passed in A. The address of the breakpoint
obtained from that table will be put into X. The
removed op-code will be put into B for transfer to
the Removed-Values table. B can then be used to
put the SWI op-code into the appropriate address.

We give the final coded form of Process2 (Set-
Up-Breakpoint Module) here; our next task is to
develop a module to handle input and output. As
you will have seen from the design of the debugger
so far, there are a number of I/O tasks to be
performed by the program. For the moment, we
will assume the existence of two subroutines: INCH,
which will input a single character into the A
register from the keyboard; and OUTCH, which will
send a character from A to the screen at the current
cursor position. The routines required by this
module are:

1.GetCommand: Input the
'
next command from the

keyboard.
2.GetAddress: Get a hex address (one to four
characters long) from the keyboard.
3.GetValue: Get a hex value (one or two characters
long) to modify the value of a memory location.
4.DisplayValue: Display a two-character hex value on
the screen.
5.DisplayAddress: Display a four-character hex address
on the screen.

Our approach illustrates the difference between
the top-down and the bottom-up methods of
programming. The top-down approach might
lead us to define and code these operations
independently, thus ending up with a number of
separate routines that do essentially the same
thing. The bottom-up approach can produce a
saving in time, effort and space by simply writing a
few useful routines that are used in a number of
different circumstances. These routines are:

GETCH: To input a single character into A, checking
against a list of valid characters (command letters or hex
digits), echoing valid characters and ignoring others.
GETHX2: To use GETCH to get two hex digits and
convert them into an eight-bit number.
GETHX4: To get four hex digits to form a 16-bit number.
PUTHEX: To display an eight-bit number as two hex
digits. (This can be called twice to display a 16-bit
number.)
PUTCR: To output a carriage return (or carriage return
and line feed if necessary).

These five routines need to be developed in turn.
First, we will consider the design of G ETCH.

GET CHARACTER ROUTINE
Data:

Inchar is an ASCII character input from the keyboard
(held in A)
Valid-Chars holds the 16-bit address of the table of
valid characters
Number-Of-Valid-Chars is an eight-bit value

Chars-Searched is an eight-bit counter
Process:

REPEAT
Get next Inchar
Set Chars-Searched to (Number-Of-Valid-Chars — 1)
While Valid-Chars(Chars-Searched) < > Inchar

AND Chars-Searched >=0
Decrement Chars-Searched

Until Chars-Searched >=0
DISPLAY Inchar

In order to code this, we must use A to store Inchar,
and the 16-bit Valid-Chars value can be passed and
kept in X. The Number-Of-Valid-Chars can be passed
in B, but will need to be kept more permanently, by
pushing it onto the stack. B can then be used for
Chars-Searched. Note that B will return the offset
into the table, which will be useful in command
interpretation and hex conversion.

We give the final coded form of this routine
here. In the next instalment of the course, we will
develop the other routines required by the input/
output module.

THE HOME COMPUTER ADVANCED COURSE 759

