* 1 K * LN -."{_{‘. 'l £

range (one to Number-Of-Breakpoints — 1)
which we use as an offset into the two tables. Note,
however, that one table is of 16-bit values whereas
the other is of eight-bit values. We will assume that
N is passed in A. The address of the breakpoint
obtained from that table will be put into X. The
removed op-code will be put into B for transfer to
the Removed-Values table. B can then be used to
put the SWI op-code into the appropriate address.

We give the final coded form of Process2 (Set-
Up-Breakpoint Module) here; our next task is to
develop a module to handle input and output. As
you will have seen from the design of the debugger
so far, there are a number of 1/0 tasks to be
performed by the program. For the moment, we
will assume the existence of two subroutines: INCH,
which will input a single character into the A
register from the keyboard; and OUTCH, which will
send a character from A to the screen at the current
cursor position. The routines required by this
module are:

1. GetCommand: Input the next command from the
keyboard.

2. GetAddress: Get a hex address (one to four

characters long) from the keyboard.

3. GetValue: Get a hex value (one or two characters
long) to modify the value of a memory location.

4. DisplayValue: Display a two-character hex value on
the screen.

5. DisplayAddress: Display a four-character hex address
on the screen.

Our approach illustrates the difference between
the top-down and the bottom-up methods of
programming. The top-down approach might
lead us to define and code these operations
independently, thus ending up with a number of
separate routines that do essentially the same
thing. The bottom-up approach can produce a
saving in time, effort and space by simply writing a
few useful routines that are used in a number of
different circumstances. These routines are:

GETCH: To input a single character into A, checking
against a list of valid characters (command letters or hex
digits), echoing valid characters and ignoring others.
GETHX2: To use GETCH to get two hex digits and
convert them into an eight-bit number.

GETHX4: To get four hex digits to form a 16-bit number.
PUTHEX: To display an eight-bit number as two hex
digits. (This can be called twice to display a 16-bit
number.)

PUTCR: To output a carriage return (or carriage return
and line feed if necessary).

These five routines need to be developed in turn.
First, we will consider the design of GETCH.

GET CHARACTER ROUTINE

Data:
Inchar is an ASCI| character input from the keyboard
(heldin A)
Valid-Chars holds the 16-bit address of the table of
valid characters
Number-0f-Valid-Chars is an eight-bit value

. . T - B E Tl i
Ry R R B IR R

Chars-Searched is an eight-bit counter
Process:
REPEAT
Get next Inchar
Set Chars-Searched to (Number-01-Valid-Chars - 1)
While Valid-Chars(Chars-Searched) <<>>Inchar
AND Chars-Searched >=0
Decrement Chars-Searched
Until Chars-Searched >=0
DISPLAY Inchar

In order to code this, we must use A to store Inchar,
and the 16-bit Valid-Chars value can be passed and
kept in X. The Number-0f-Valid-Chars can be passed
in B, but will need to be kept more permanently, by
pushing it onto the stack. B can then be used for
Chars-Searched. Note that B will return the offset
into the table, which will be useful in command
interpretation and hex conversion.

We give the final coded form of this routine
here. In the next instalment of the course, we will
develop the other routines required by the input/
output module.

GETCH Routine

GETCH PSHS B SaveB
REPTOO BSR INCH Get Next Inchar
LDB 1S Set Chars-Searched
DECB Subtract one from max offset
WHILOO BLT ENDWOO While Chars-Searched >=0
CMPA B,X AND
BEQ ENDWOO Inchar <= Valid-Chars(Chars-
Searched)
DECB Decrement Chars-Searched
BRA WHILOO
ENDWOO TSTB
UNTLOO BLT REPTOO Until Chars-Searched > =0
BSR i OUTCH Display Inchar
LEAS 1,5 Increment S to “forget’ the
RTS original value of B

Set-Up-Breakpoint Module

Data declarations

BPTAB RMB 32 Breakpoint-Table
REMTAB RMB 16 Removed-Values
NUMBP FCB 0 Number-0f-Breakpoints
NEXTBP FCB 0 Next-Breakpoint
SWIOP FCB S3F SWI-Opcode
MAXBP FCB 16 Maximum number of Breakpoints
Process2 — Set-Up-Breakpoint
BP02 PSHS ‘B.X Save the registers we will alter
LSLA Multiply the offset by two
LEAX BPTAB,PCR Base address of table
LDX AX Get Address in Breakpoint-Table(N)
LDB X Get Op-code at that address
LSRA Restore A to original value
STB AX Store Op-code in Removed-Values(N)
LDB SWIOP,PCR Get SWI-Opcode
STB X Store it at the address
PULS B.X,PC Restore and return
End of Process2

THE HOME COMPUTER ADVANCED COURSE 759



