SFAQ5, giving us a table of three two-byte pointers.
Now when our imaginary interpreter encounters a
token — $81, for example — it proceeds to subtract
S8(from it, multiplies the result by two, and adds
that to SFA0Q. The final result in this case is SFAQ2,
which is the lo byte of the pointer to the PRINT
subroutine. If a token other than $81 had been
encountered, then the algorithm described would
have returned the pointer address for the
corresponding subroutine. In this way the Basic
command PRINT is replaced by a token, $81, which
is an offset to a table of pointers that direct the
interpreter to the relevant part of its own program.

That's a measure of the ‘distance’ between
Basic, a so-called high-level language, and
machine-code, the low-level language. Basic
looks comprehensible tous because it uses English
language code words, algebraic logic and numbers
and strings. When we replace the words by tokens,
and the rest by ASCII codes, it begins to look a lot
more like something a microprocessor can handle
— and, as we've seen with tokens, that’s almost
exactly the case.

The final thing to consider about memory
manipulation is the idea of context. We've seen in
the Basic Text Area the widespread use of codes
— ASCII codes to represent characters and
numbers, tokens to represent commands, and (in
the Spectrum) special binary codes to represent
numeric data (see page 78). All of these codes
reduce to binary numbers in the range 00000000
to 11111111 (SO0 to SFF, 0 to 255 decimal)
contained in single bytes of memory, and
interpreted according to their context, In the Basic
Text Area of the Commodore 64, for example,
the BASIC program line:

200 rem™" """ lefr§* Tt

might have three bytes containing the decimal
number 200 — once in the link address lo byte,
once in the line number lo byte, and once in the
token representation of 'leftS". Each byte looks the
same as the others, yet means something different.
It is only your expectations that tell you how to
interpret that value in different places.

This is really where we came in, at the start of
the Machine Code course. Then we said that
everything stored in a computer is in some sort of
machine code. Some of this was familiar (like
ASCII codes), some unfamiliar (such as tokens),
and some as yet unexplained (such as machine
code programs). So let's now start looking at
machine code programs themselves.

OPERATION CODES

Programs in machine code are sequences of
bytes located anywhere in memory that are a
mixture of instructions to the microprocessor, and
data for the microprocessor to operate upon. As
with all other bytes of memory, it is only the
context that can separate the data bytes from the
instruction bytes, so we must first consider the
format of machine code program instructions.

98 THE HOME COMPUTER ADVANCED COURSE

A machine code instruction begins with a code
that identifies the operation to be performed. This
is called the op-code, or opc, and may be one or
two bytes in length. The op-code may be a self-
sufficient instruction requiring no data, but more
usually itis followed by one or two bytes of data. A
single byte of data is likely to be a numerical
constant or an ASCII code, while two bytes of data
following an op-code are always an address
(always stored in lo byte/hi byte form). With the
above definition we immediately come upon
differences between microprocessors: the BBC
Micro uses a MOS Tech 6502 A, the Commodore
64 uses a MOS Tech 6510 (very similar to the
6502A, so in future we'll talk generally about the
6502 only), and the Spectrum has the Zilog
Z80A. MOS Tech and Zilog developed their
microprocessors at about the same time — the
early 1970s — following the release by Intel of the
first microprocessor in 1971. Both the 6502 and
Z80 therefore share a design philosophy, but they
differ sharply in detail. In particular, Z80 machine
codes are completely different from 6502 machine
codes. Thus, for example, 6502 op-codes are
always one byte long, and may be followed by one
or two data bytes or by none; but Z80 op-codes
can be two bytes long, followed by one or two data
bytes or by none.

When sent to the microprocessor, an op-code is
decoded by the CPU’s internal program into
operation and length codes, and it is this latter
information that enables the microprocessor to
interpret the bytes following the opc. For example,
to the 6502 the sequence of hex bytes:

A9 OE 8D 01 4E 60 44 52 41 54

represents three instructions, followed by four
bytes of ASCII codes. This could be re-written as:

AS OE
80 01 4E
60

44

92

41

54

showing that the first instruction is opc A3, which is
always followed by one data byte; the next
instruction is opc 80, which is always followed by
two data bytes; while the next is opc 60 which
requires no data and causes program execution to
branch, so that the following data bytes are not
examined by the processor at all. If the
microprocessor is sent the first byte, A, when it is
expecting to receive an opc, then everything will
function smoothly thereafter. The information in
each opc will ensure that the correct number of
data bytes for each opc is picked up by the
processor, and the following byte will be treated as
the next opc. If, however, the processor is
expecting an opc and is sent the second byte, OE,
then it will treat this as an opc, with the result that
the sequence will be interpreted thus:

