{

15 e

Formation Display

The screen formatting routing
used by Haumted Forestand
Digitaya allows any screen
output to be formatted so that
word breaks do not occur. By
using variables OWS and NW:S
the routine ‘looks’ onsword
ahead of the word ahout to be
printed. If the next word were to
gxceed the designated line
lzngth, the semi-colon
SUPIESSing 3 carriage returnis
pmmited, causing & new line to
be started

%’ PROGRAMMING PROJECTS /ADVENTURE GAME

STORY LINE

The adventure games that we are designing
in this programming project are text-based
— when the player enters a new location, the
description and the possible exits must be
printed to the screen. Here, we develop a
uiility that will allow us to format output to
the screen.

As IDhgitaya and Haunted Forest are both text-
based adventures, they use words to descnbe
locations and events. Passing this mformation to
the screen using PRINT statements can be
inelegant. For example, a PRINT statement that
exceeds the length of one screen line will carry
onto the next line, often splitting in two words that
fall across the end of the screen line. A laborious
way to get around this problem would be to
consider each PRINT statement in the program
individually and ‘manually’ format the output so
that words on the ends of hines were not split. If
there were just a few occasions on which this had to
be done then it would not be too much of a chore,
but in an adventure game program this would have
to be done a lot. The alternative is to design a
routine that formats output for us. To use such a
routine we should be able to pass the sentenice we
want to format to the routine via a string variable,
and the routine should take care of the formatting
and output.

Ihgitaya and Haunted Forest both use a speaial
routine to format their output, so before we
continue to describe the game programming itself,
let’s look at how this routine works. Here is the
listing from the Haunted Forest game.

S5O REM xrxw: FORMAT OUTPUT SR #%k#
551/ |L.C=A: REM CHAR-L [HE COUNTER

SEEf oE=13: REM DLO COUNT INITIAL WALUE
S52A OlLkE="=| REM DLD WORD THITIAL, YALUE
5548 LL=d8: REM LIME LEMGTH

SS90 SHE=SNE+" DUMMT

SSE8 PRINT

S57A FOR C=| Td LEMOSHE)

5588 LC=lL.C*|

STAa IF MIDS(SNE,C. iy " THEN GOSUSSS0@
BB REXT C

SEDS FRIMT

SB 18 RETURN

=1 =1l B

78988 REM xx EMD OF LIME CHECK EB/R &%
SE18 MAE=MIDSCSHE DS, C-00 41 Y 1REM MEW . WORD
5820 IF LC{LL THEMNFRINTORS: :GOTOS249
SA30 FRINTOWS: LC=LENOMEE)

SRA% OC=C+1 POLE=ME

528598 RETURMN

I'he routine first of all searches through the

sentence, passed to it by the variable SNS, for a

space character. Whenever a space is found, the

subroutine at line 6020 is called, This subroutine
carries out several important tasks. Using OC 1o
indicate the beginning of a word (initially, 0C is set
to 1), and C to keep track of the current character
under examination, the word encountered before
the space can be isolated using MIDS and stored in
NWS (for ‘New Word’). Before the contents of
NWS are output to the screen, they will be
transferred to OWS.

A line counter, LC, is used to count how many
characters have been used so far on any given line,
and this is checked at line 6040 to ensure that it is
less than the permitted line length, LL. If this is the
case, then OWS is PRINTed, followed by a semi-
colon to ensure that any output that follows will
continue on the same line. If LC does exceed LL
then, again, OWS is PRINTed, but this time omitting
the semi-colon (and thus, any output that follows

_ : danwes TESRRRY
¥ .
| 1|2|2|a|5|6}7 35 ‘Iﬂﬁ1213141515’1?13192‘]21Hﬂﬁﬁ?ﬁﬂﬂﬂﬂiﬁ[ﬂnﬂﬂﬁﬂﬂﬂﬂ:ﬂﬂﬂ
| : {
C(T|2|3|4|5|6 7|8 11]Tf"!E'IS‘H‘IS1E1?!31’!21121Hﬁﬂﬁmﬂﬂﬂmn’nq_ﬂﬁﬁﬂa |80 4042 (43 44| 45| 45 {47 | 48| 40 (501 51
T ¥
A) e} - |1 - = - :
MIA|R|Y HiA|D A L1 T]T|L]|E Lia|m|B TS FI.E'Eé'Wl$'PHEITE'l5'EHHW

OWSCLEECE OWSWAS™

» - O) : WS = “WHITE**
e 12-3155Tﬂ!‘lﬂﬂ‘lﬂﬁuﬁﬁﬂ'ﬂﬂmﬂBﬂﬂﬁnﬂzﬂihﬂ-ﬁu-ﬁiﬂﬂ
M ARY H A D A R (D e v I L AME 115 £ ESETLE W A S
B 1A i‘l}l’ﬂ_mlﬂﬁ]ﬁ?ﬂ!ﬂﬂﬂﬂﬂ
WH I'TE A S S N0 W

T92 THE HOME COMPUTER ADVANCED COURSE

LRZ DIXON

