
PROGRAMMING PROJECTS /ADVENTURE GAME

knobs Display
The screen formatting routine
used by Haunted Forest and
Digitaya allows any screen
output to be formatted so that
vtord breaks do not occur. By
using variables OWS and NWS
the routine looks' one word
ahead of the word about to be
printed. If the next word were to
exceed the designated line
length. the semi-colon
supressing a carriage return is
ommited. causing anew line to
be started

STORY LINE

The adventure games that we are designing
in this programming project are text-based
— when the player enters a new location, the
description and the possible exits must he
printed to the screen. Here, we develop a
utility that will allow us to format output to
the screen.

As Digitaya. and Haunted Forest are both text-
based adventures, they use words to describe
locations and events. Passing this information to
the screen using PRINT statements can be
inelegant. For example, a PRINT statement that
exceeds the length of one screen line will carry
onto the next line, often splitting in two words that
fall across the end of the screen line. A laborious
way to get around this problem would be to
consider each PRINT statement in the program
individually and 'manually' format the output so
that words on the ends of lines were not split. If
there were just a few occasions on which this had to
he done then it would not he too much of a chore,
but in an adventure game program this would have
to be done a lot. The alternative is to design a
routine that formats output for us. 'lb use such a
routine we should be able to pass the sentence we
want to format to the routine via a string variable,
and the routine should take care of the formatting
and output.

Digitaya and Haunted Forest both use a special
routine to format their output, so before we
continue to describe the game programming itself,
Let's look at how this routine works. Here is the
listing from the Haunted Forest game.

ssee REM **** FORMAT OUTPUT 6/R ****
5510 LC=0; 	REM CHAR/LINE COUNTER
55E0 °Ca): 	REM OLD COUNT INITIAL VALUE
5530 ows=--: REM OLD WORD INITIAL VALUE
5540 LL=40: REM LINE LENGTH
5550 51,10.5Na+" OUMMY •
5560 PRINT
5570 FOR C=1 TO LEN(SP)
5380 LCaLC*I

5$710 IF N100(SNciC , 1) ■ • • THEN oosuessee
3690 NEXT C
5605 PRINT
5610 RETURN
56E0 :
5800 REM *a ENO OF LINE CHECK S/R a*
5810 NWSm4100<$N0,0C.C-OC 4 1):REM NEW WORD
58E0 IF LCCLL THENPRINTOWC:00T05840
5030 PRINTOWONLCaLENINWS ,
5840 OC.C.110W5*NNs
5850 RETURN

The routine first of all searches through the
sentence, passed to it by the variable SNS, for a
space character. Whenever a space is found, the
subroutine at line 6020 is called. This subroutine
carries out several important tasks. Using OC to
indicate the beginning of a word (initially, OC is set
to 1), and C to keep track of the current character
under examination, the word encountered before
the space can be isolated using MIDS and stored in
NWS (for 'New Word). Before the contents of
NWS are output to the screen, they will be
transferred to OW$.

Aline counter, LC, is used to count how many
characters have been used so far on any given line,
and this is•checiced at line 6040 to ensure that it is
less than the permitted line length, LL. If this is the
case, then OWS is PRINTed, followed by a semi-
colon to ensure that any output that follows
continue on the same line. If LC does exceed LL
then, again, °WS is PRINTed, but this time omitting
the semi-colon (and thus, any output that follows

END OF LINE

6 7 8 9 10 11 12 73

	

IS1 1 121314 Is 1617I8
	

12

El
	

NI I

OWS 'FLEECE*" 	OWS 'WAS" 	OWS - *WHITE • *

	

FORMATTED OUTPUT 	 NWS 'WAS — 	NWS -*WHITE" 	NWS - *AS*"

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 242S 26 27 M29 30 31 32 33 34 35 36 37 38

MARY 	HAD 	4 	LITTLE 	LAMB 	ITS 	FLEECE 	WAS

LC 	 (1 1 (2) 	(4) (5) 6 7 8 9 10 11 12 13 14

WH ITE 	AS 	SNOW

792 THE HOME COMPUTER ADVANCED COURSE

